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I develop machine learning methods that discover actionable knowledge from large, messy datasets.
My applied focus is healthcare, where novel probabilistic models and optimization algorithms are
needed to learn from big, noisy, unlabeled datasets to produce recommendations clinicians can
trust. In one project, we modeled vital sign trajectories in the Intensive Care Unit across 36,000
patients to predict the need for mechanical ventilators. In ongoing work with psychiatrists at Mas-
sachusetts General Hospital, we are finding subpopulations of major depression disorder which
require distinct drug combination therapies. My research provides better methods to the machine
learning community, patient-specific treatment advice to doctors, and scientific insight into possi-
ble subtypes or trajectories of targeted diseases. I strive to deliver results beyond top-tier publica-
tions, including open-source software and (eventually) deployed clinical decision support systems.

My research agenda addresses three fundamental challenges in machine learning (ML) in order to
deliver the promise of probabilistic models to the broader scientific and medical community:

Q1: How can we combine abundant unlabeled data with rare task-specific labels? Observational
medical datasets contain many thousands of patients, but only a few will have reliable labels of
treatments that were successful (not just attempted). Because acquiring labels is expensive, we must
develop a semi-supervised approach that learns from few labeled examples and many unlabeled
ones. Latent variable models which explain both the data x and labels y can achieve two needed
goals: good generative models of data x (clinical insight on possible subtypes) and good prediction
of labels y from data x (personalized treatments that work). However, despite decades of work
we find that existing methods always fail on at least one of these goals. We have developed a
new prediction-constrained training objective, which enables the practioner to balance both goals.
Clinicians can thus train and deploy models that offer the best possible insights into patient clusters
or disease subtypes while also satisfying a predefined accuracy guarantee for treatment prediction.

Q2: How can we improve inference algorithms to reach good solutions consistently? Models that
are flexible enough for big clinical data, such as Bayesian nonparametric (BNP) models or deep
neural networks, suffer from unreliable training. Typical methods optimize non-convex objective
functions via iterative updates to subsets of parameters. Even on small data, random initializations
become stuck at poor local optima and fail to reach even the best mode, let alone explore the real
posterior. Scaling to millions of examples only exaggerates this problem. My Ph.D. work on reli-
able BNP suggests that standard updates can be interleaved with data-driven proposals that create
new clusters to better explain some examples or remove irrelevant clusters. Our proposal-driven
algorithms reach qualitatively better solutions without expensive restarts or cross-validation.

Q3: How can we optimize models to be interpretable to human users? Large, flexible models are
needed for high accuracy predictions on complex medical datasets, but how can users comprehend
and trust their predictions? While many efforts interpret fixed models after they are trained, our
recent work looks at optimizing models to be more interpretable. We have trained some models to
be easier to simulate, so doctors could quickly step through the prediction process to understand
how a specific input leads to the provided output. We have also thought about counter-factual
reasoning: understanding how slightly perturbed inputs lead to different predictions. Clinicians
have stressed that answers to these questions are essential to trusting an ML system as part of a
real patient’s treatment.
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Semi-Supervised Models for Personalized Medicine: Progress on Q1

Personalized healthcare is a natural problem for latent variable models, which can infer patient-
specific low-dimensional representations useful for task-specific predictions. Clinicians often pre-
fer models where hidden variables h (e.g. trajectory from severe kidney malfunction to healthy
state) jointly explain input data x (e.g. labs, vital signs) and output labels y (e.g. prescribed in-
terventions). Our paper at the 2017 Joint Summits of the American Medical Informatics Associa-
tion (AMIA) applied auto-regressive switching-state models to time-series data from 36,000 ICU
patients [5]. Although trained in an unsupervised way (discovering common trajectories without
labels y), our learned representations improved 4-hour look-ahead predictions of need for me-
chanical ventilation. Latent variable models can improve personalized care and smooth logistics
in the busy ICU, but to reach higher accuracies we must supervise training by including labels.

Despite decades of work on (semi-)supervision of latent variable models, existing methods remain
unsatisfactory. For example, a supervised topic model survey [6] shows no accuracy gains over
unsupervised models when predicting patient outcomes from clinical notes. My postdoc work has
discovered why: previous training objectives do not prioritize predicting y from x alone. Instead,
our recent preprint [15] shows many previous objectives [11; 23; 24; 4] can be formally reduced
to optimizing a joint probability p(x, y), where the labels y are replicated λ ≥ 1 times. When the
model is (inevitably) misspecified for real data, such training may not predict y from x well.

To improve accuracy, our proposed prediction-constrained (PC) objective directly delivers the best
possible generative model that meets a provided quality guarantee on the model’s y from x predic-
tions. Our PC-trained mixture and topic models reach qualitatively better solutions on toy exam-
ples with misspecification and text sentiment analysis. Unlike purely discriminative approaches,
PC training can improve predictions by including many unlabeled examples, while boosting data
likelihoods as well. This core methods work will appear in the Artificial Intelligence and Statistics
(AISTATS) 2018 conference. Working with Dr. Perlis and Dr. McCoy at Massachusetts General
Hospital, we have applied PC training to recommend antidepressants for patients with major de-
pression, resulting in two papers in the NIPS Workshop on ML for Health [19; 18] and a clinical
journal publication in preparation for JAMA Psychiatry.

Future work: extensions to time-series models and reinforcement learning. Our prediction-
constrained (PC) framework should translate usefully to many currently unsupervised latent vari-
able models, including our ICU time-series applications and recent compositions of linear dynami-
cal systems with flexible neural net likelihoods [9]. Further ahead, prediction-constrained methods
could help reinforcement learning models make sequential drug recommendations that maximize
reward even when labels for action success are rare.

Future work: prediction-constrained posteriors to handle uncertainty. Our current PC frame-
work delivers point estimates of parameters. We would rather estimate posterior distributions and
thus manage our uncertainty. However, standard variational methods for estimating approximate
posteriors are not tractable for PC training. These methods optimize a lower bound on the data evi-
dence log p(x) but one term in our PC objective requires an upper bound instead. Such upper bounds
could also be useful for other common questions, such as estimating p(validation data|train data)
for a given model. Estimating variational upper bounds remains a challenging methodological
problem. Ultimately, including uncertainty in our PC-trained models could provide better cali-
brated suggestions for interventions, especially when test examples diverge from training data.
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Reliable Inference for Bayesian Nonparametrics: Progress on Q2

My Ph.D. thesis developed reliable optimization methods for Bayesian nonparametric (BNP) clus-
tering models, particularly the Dirichlet process (DP) and its extensions to time series. While para-
metric models like k-means require an a priori number of clusters, BNP models learn the number
of clusters needed to explain a dataset, balancing gains in quality from adding more clusters with
a rich-get-richer preference for fewer clusters. BNP models thus promise an automatic solution to
the model selection problem in one training run that avoids expensive cross-validation or fancy
initializations. However, standard BNP algorithms do not fulfill this promise. Both Markov chain
Monte Carlo (MCMC) methods and optimization-based variational inference use restrictive update
steps that get stuck in poor local optima due to the limited range of each update.

Our 2013 Neural Information Processing Systems (NIPS) conference paper [13] developed a new
algorithm for BNP mixture models that used data-driven proposals to jump out of local optima
by adding crucial missing clusters or removing redundant clusters. These proposals optimize a
variational objective function which tightly bounds the marginal likelihood and thus exhibits the
“Ockham’s razor” effect that penalizes models that are too complex or too simple. Furthermore,
our method scales to large datasets by processing data one small batch at a time. Unlike stochastic
methods that require tuning a nuisance learning rate [7], our scalable memoized algorithm has no
learning rate at all yet guarantees that the objective will monotonically increase after every step.

Later, we extended this approach to topic modeling with the hierarchical Dirichlet process (HDP)
[16], sequence segmentation via the HDP hidden Markov model (HDP-HMM) [17], and compo-
sitional models for natural images [8]. These settings are challenging due to non-conjugacy and
tighter data dependencies. Nevertheless, we can optimize a variational lower bound via data-
driven proposal moves that scale to millions of NY Times articles or the entire human genome. To
make these contributions accessible, I released BNPy, an open-source Python software package [12]
now used by many researchers, including data science teams at the New York Times.

Future work: Sparsity and recognition networks for extreme scalability. Two major challenges
prevent BNP clustering from scaling to billions of examples and thousands of clusters. First, the
bottleneck of training is the runtime cost of fitting a large model to each new example. Recent
variational auto-encoders [10; 20] pursue an overall Bayesian variational objective but use a fast,
feed-forward neural network to approximate the posterior needed for each new example. Thus,
information from previous examples can help cluster new data faster and thus amortize costs.
Second, our recent preprint [14] suggests that sparse representations of per-example posteriors can
reduce storage and improve speed, making BNP models with thousands of clusters possible. Incor-
porating these speedups together with data-driven proposal moves and our semi-supervised PC
training has huge potential for discovering thousands of prototypical patient trajectories or disease
subtypes from million-patient, multi-hospital datasets like eICU [3].

Future work: Guarantees on proposal quality. Thus far, the data-driven proposals used in our al-
gorithms have been heuristically designed and have no guarantees about how far its final estimate
is from a global optima. Connections to the approximation quality guarantees in the k-means++
algorithm [2] might be possible with BNP variational objectives, because all these objectives are in-
stances of minimizing (expected) Bregman divergences between cluster centers and data points [1].
Proposal moves that deliver guaranteed approximation ratios to the best-possible clustering model
would be a huge advancement for the reliability of BNP on large datasets.
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Optimizing Deep Models for Interpretability: Progress on Q3

While deep learning has made impressive strides on image and language tasks, many clinical prac-
titioners are reluctant to adopt deep models because their predictions are difficult to interpret,
explain, and trust. During my postdoc, I’ve pursued two efforts to close this trust gap.

First, our IJCAI 2017 paper [21] shows how to train models to respect expert annotations of features
relevant to specific examples. Furthermore, even without expert annotations our method can ac-
tively discover models with different per-example decision rationales via the same regularization
process. This gives practitioners valuable tools to debug pretrained models or discover confound-
ing features hiding in their datasets.

Second, in a paper recently accepted to the 2018 Association for the Advancement of Artificial
Intelligence (AAAI) conference [22], we introduce tree-regularization as a method to optimize deep
models so they are human-simulatable. Small decision trees with only a few nodes make it easy for
humans to step through the entire prediction process, and thus enjoy widespread use in manual
medical diagnosis. In contrast, feed-forward networks with a dozen hidden units can have far too
many parameters and connections for a human to simulate. Deep models for sequences are even
more challenging. Simulatability allows clinicians to audit predictions easily. They can manually
inspect changes to outputs under slightly-perturbed inputs or identify when predictions are made
due to systemic data bias rather than real causes. Our work shows that recurrent neural networks
for predicting treatments for patients with sepsis or HIV can be trained to have simpler, tree-like
decision boundaries with fewer than 25 nodes, while still predicting better than standalone trees.

Future work: interpretable representations of time-varying decisions. A key limitation of our
tree-regularization work is that we interpret the predictions of a time-series model using data only
from its latest time step. Improving simulatable explanations of time-series models will require
careful thinking about better representations of complex time-varying trends (e.g. blood pressure
was rising, but heart rate stabilized). Providing such explanations would help us understand the
predictions of recurrent neural networks or BNP time-series models for many applications.

Research Vision: Machine Learning for Clinical Decision-Making.

In the next decade, I think answers to Q1, Q2, and Q3 can improve the daily decisions of clini-
cians for individual patients and broaden scientific understanding of subtypes of depression and
other diseases. My research agenda offers crucial methods needed to answer these questions. I am
excited to collaborate with others to achieve this agenda, especially experts in reinforcement learn-
ing, probabilistic programming, and human-computer interaction. I’m particularly keen to work
with UX designers and clinicians to collaboratively prototype predictive analytics tools so they
actually improve care. Beyond strong methodological and clinical publications, I plan to deliver
open-source tools to the broader ML community that make it possible to rapidly train, evaluate,
inspect, and criticize a series of models to find the best approach for a given application. Finally, I
am eager to deploy clinical decision support systems at the bedside, so patients can benefit from
improved understanding of disease subtypes and targeted treatment predictions.
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