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We propose a Bayesian nonparametric approach to the problem of jointly
modeling multiple related time series. Our model discovers a latent set of
dynamical behaviors shared among the sequences, and segments each time
series into regions defined by a subset of these behaviors. Using a beta process
prior, the size of the behavior set and the sharing pattern are both inferred
from data. We develop Markov chain Monte Carlo (MCMC) methods based
on the Indian buffet process representation of the predictive distribution of the
beta process. Our MCMC inference algorithm efficiently adds and removes
behaviors via novel split-merge moves as well as data-driven birth and death
proposals, avoiding the need to consider a truncated model. We demonstrate
promising results on unsupervised segmentation of human motion capture
data.

1. Introduction. Classical time series analysis has generally focused on the
study of a single (potentially multivariate) time series. Instead, we consider ana-
lyzing collections of related time series, motivated by the increasing abundance of
such data in many domains. In this work we explore this problem by considering
time series produced by motion capture sensors on the joints of people perform-
ing exercise routines. An individual recording provides a multivariate time series
that can be segmented into types of exercises (e.g., jumping jacks, arm-circles, and
twists). Each exercise type describes locally coherent and simple dynamics that
persist over a segment of time. We have such motion capture recordings from mul-
tiple individuals, each of whom performs some subset of a global set of exercises,
as shown in Figure 1. Our goal is to discover the set of global exercise types (“be-
haviors”) and their occurrences in each individual’s data stream. We would like to
take advantage of the overlap between individuals: if a jumping-jack behavior is
discovered in one sequence, then it can be used to model data for other individuals.
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FIG. 1. Motivating data set: 6 sequences of motion capture data [CMU (2009)], with manual an-
notations. Top: Skeleton visualizations of 12 possible exercise behavior types observed across all
sequences. Middle left: Binary feature assignment matrix F produced by manual annotation. Each
row indicates which exercises are present in a particular sequence. Middle right: Discrete segmenta-
tions z of all six time series into the 12 possible exercises, produced by manual annotation. Bottom:
Sequence 2’s observed multivariate time series data. Motion capture sensors measure 12 joint angles
every 0.1 seconds. Proposed model: The BP-AR-HMM takes as input the observed time series sensor
data across multiple sequences. It aims to recover the global behavior set, the binary assignments F,
and the detailed segmentations z. When segmenting each sequence, our model only uses behaviors
which are present in the corresponding row of F.

This allows a combinatorial form of shrinkage involving subsets of behaviors from
a global collection.

A flexible yet simple method of describing single time series with such pat-
terned behaviors is the class of Markov switching processes. These processes as-
sume that the time series can be described via Markov transitions between a set
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of latent dynamic behaviors which are individually modeled via temporally inde-
pendent linear dynamical systems. Examples include the hidden Markov model
(HMM), switching vector autoregressive (VAR) process, and switching linear dy-
namical system (SLDS). These models have proven useful in such diverse fields as
speech recognition, econometrics, neuroscience, remote target tracking, and hu-
man motion capture. In this paper, we focus our attention on the descriptive yet
computationally tractable class of switching VAR processes. Here, the state of the
underlying Markov process encodes the behavior exhibited at a given time step,
and each dynamic behavior defines a VAR process. That is, conditioned on the
Markov-evolving state, the likelihood is simply a VAR model with time-varying
parameters.

To discover the dynamic behaviors shared between multiple time series, we pro-
pose a feature-based model. The entire collection of time series can be described by
a globally shared set of possible behaviors. Individually, however, each time series
will only exhibit a subset of these behaviors. The goal of joint analysis is to dis-
cover which behaviors are shared among the time series and which are unique. We
represent the behaviors possessed by time series i with a binary feature vector fi ,
with fik = 1 indicating that time series i uses global behavior k (see Figure 1).
We seek a prior for these feature vectors which allows flexibility in the number
of behaviors and encourages the sharing of behaviors. Our desiderata motivate a
feature-based Bayesian nonparametric approach based on the beta process [Hjort
(1990), Thibaux and Jordan (2007)]. Such an approach allows for infinitely many
potential behaviors, but encourages a sparse representation. Given a fixed feature
set, our model reduces to a collection of finite Bayesian VAR processes with par-
tially shared parameters.

We refer to our model as the beta-process autoregressive hidden Markov model,
or BP-AR-HMM. We also consider a simplified version of this model, referred
to as the BP-HMM, in which the AR emission models are replaced with a set of
conditionally independent emissions. Preliminary versions of these models were
partially described in Fox et al. (2009) and in Hughes, Fox and Sudderth (2012),
who developed improved Markov chain Monte Carlo (MCMC) inference pro-
cedures for the BP-AR-HMM. In the current article we provide a unified and
comprehensive description of the model and we also take further steps toward the
development of an efficient inference algorithm for the BP-AR-HMM. In particu-
lar, the unbounded nature of the set of possible behaviors available to our approach
presents critical challenges during posterior inference. To efficiently explore the
space, we introduce two novel MCMC proposal moves: (1) split-merge moves to
efficiently change the feature structure for many sequences at once, and (2) data-
driven reversible jump moves to add or delete features unique to one sequence.
We expect the foundational ideas underlying both contributions (split-merge and
data-driven birth–death) to generalize to other nonparametric models beyond the
time-series domain. Building on an earlier version of these ideas in Hughes, Fox
and Sudderth (2012), we show how to perform data-driven birth–death proposals
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using only discrete assignment variables (marginalizing away continuous HMM
parameters), and demonstrate that annealing the Hastings term in the acceptance
ratio can dramatically improve performance.

Our presentation is organized as follows. Section 2 introduces motion capture
data. In Section 3 we present our proposed beta-process-based model for multi-
ple time series. Section 4 provides a formal specification of all prior distributions,
while Section 5 summarizes the model. Efficient posterior computations based on
an MCMC algorithm are developed in Section 6. The algorithm does not rely on
model truncation; instead, we exploit the finite dynamical system induced by a
fixed set of features to sample efficiently, while using data-driven reversible jump
proposals to explore new features. Section 7 introduces our novel split-merge pro-
posals, which allow the sampler to make large-scale improvements across many
variables simultaneously. In Section 8 we describe related work. Finally, in Sec-
tion 9 we present results on unsupervised segmentation of data from the CMU
motion capture database [CMU (2009)]. Further details on our algorithms and ex-
periments are available in the supplemental article [Fox et al. (2014)].

2. Motion capture data. Our data consists of motion capture recordings
taken from the CMU MoCap database (http://mocap.cs.cmu.edu). From the avail-
able set of 62 positions and joint angles, we examine 12 measurements deemed
most informative for the gross motor behaviors we wish to capture: one body torso
position, one neck angle, two waist angles, and a symmetric pair of right and left
angles at each subject’s shoulders, wrists, knees, and feet. As such, each recording
provides us with a 12-dimensional time series. A collection of several recordings
serves as the observed data which our model analyzes.

An example data set of six sequences is shown in Figure 1. This data set contains
three sequences from Subject 13 and three from Subject 14. These sequences were
chosen because they had many exercises in common, such as “squat” and “jog,”
while also containing several unique behaviors appearing in only one sequence,
such as “side bend.” Additionally, we have human annotations of these sequences,
identifying which of 12 exercise behaviors was present at each time step, as shown
in Figure 1. These human segmentations serve as ground-truth for assessing the
accuracy of our model’s estimated segmentations (see Section 9). In addition to
analyzing this small data set, we also consider a much larger 124 sequence data set
in Section 9.

3. A featural model for relating multiple time series. In our applications
of interest, we are faced with a collection of N time series representing realiza-
tions of related dynamical phenomena. Our goal is to discover dynamic behaviors
shared between the time series. Through this process, we can infer how the data
streams relate to one another as well as harness the shared structure to pool obser-
vations from the same behavior, thereby improving our estimates of the dynamic
parameters.

http://mocap.cs.cmu.edu
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We begin by describing a model for the dynamics of each individual time se-
ries. We then describe a mechanism for representing dynamics which are shared
between multiple data streams. Our Bayesian nonparametric prior specification
plays a key role in this model, by addressing the challenge of allowing for uncer-
tainty in the number of dynamic behaviors exhibited within and shared across data
streams.

3.1. Per-series dynamics. We model the dynamics of each time series as a
Markov switching process (MSP). Most simply, one could consider a hidden
Markov model (HMM) [Rabiner (1989)]. For observations yt ∈ R

d and hidden
state zt , the HMM assumes

zt |zt−1 ∼ πzt−1,
(1)

yt |zt ∼ F(θzt ),

for an indexed family of distributions F(·). Here, πk is the state-specific transition
distribution and θk the emission parameters for state k.

The modeling assumption of the HMM that observations are conditionally in-
dependent given the latent state sequence is insufficient to capture the temporal
dependencies present in human motion data streams. Instead, one can assume that
the observations have conditionally linear dynamics. Each latent HMM state then
models a single linear dynamical system, and over time the model can switch be-
tween dynamical modes by switching among the states. We restrict our attention
in this paper to switching vector autoregressive (VAR) processes, or autoregres-
sive HMMs (AR-HMMs), which are both broadly applicable and computationally
practical.

We consider an AR-HMM where, conditioned on the latent state zt , the obser-
vations evolve according to a state-specific order-r VAR process:3

yt =
r∑

�=1

A�,zt yt−� + et (zt ) = Ak ỹt + et (zt ),(2)

where et (zt ) ∼ N (0,�zt ) and ỹt = [yT
t−1 · · · yT

t−1 ]T are the aggregated past
observations. We refer to Ak = [A1,k · · · Ar,k ] as the set of lag matrices. Note
that an HMM with zero-mean Gaussian emissions arises as a special case of this
model when Ak = 0 for all k. Throughout, we denote the VAR parameters for
the kth state as θk = {Ak,�k} and refer to each VAR process as a dynamic be-
havior. For example, these parameters might each define a linear motion model
for the behaviors walking, running, jumping, and so on; our time series are then
each modeled as Markov switches between these behaviors. We will sometimes
refer to k itself as a “behavior,” where the intended meaning is the VAR model
parameterized by θk .

3We denote an order-r VAR process by VAR(r).
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3.2. Relating multiple time series. There are many ways in which a collection
of data streams may be related. In our applications of interest, our N time series are
related by the overlap in the set of dynamic behaviors each exhibits. Given exercise
routines from N actors, we expect both sharing and variability: some people may
switch between walking and running, while others switch between running and
jumping. Formally, we define a shared set of dynamic behaviors {θ1, θ2, . . .}. We
then associate some subset of these behaviors with each time series i via a binary
feature vector fi = [fi1, fi2, . . .]. Setting fik = 1 implies that time series i exhibits
behavior k for some subset of values t ∈ {1, . . . , Ti}, where Ti is the length of the
ith time series.

The feature vectors are used to define a set of feature-constrained transition dis-
tributions that restrict each time series i to only switch between its set of selected
behaviors, as indicated by fi . Let π

(i)
k denote the feature-constrained transition

distribution from state k for time series i. Then, π
(i)
k satisfies

∑
j π

(i)
kj = 1, and

⎧⎨
⎩

π
(i)
kj = 0, if fij = 0,

π
(i)
kj > 0, if fij = 1.

(3)

See Figure 2. Note that here we assume that the frequency at which the time se-
ries switch between the selected behaviors might be time-series-specific. That is,
although two actors may both run and walk, they may alternate between these
behaviors in different manners.

The observations for each data stream then follow an MSP defined by the
feature-constrained transition distributions. Although the methodology described
thus far applies equally well to HMMs and other MSPs, henceforth we focus our
attention on the AR-HMM and develop the full model specification and infer-
ence procedures needed to treat our motivating example of visual motion capture.
Specifically, let y(i)

t represent the observed value of the ith time series at time t ,
and let z

(i)
t denote the latent dynamical state. Assuming an order-r AR-HMM as

FIG. 2. Illustration of generating feature-constrained transition distributions π
(i)
j . Each time se-

ries’ binary feature vector fi limits the support of the transition distribution to the sparse set of
selected dynamic behaviors. The nonzero components are Dirichlet distributed, as described by equa-
tion (12). The feature vectors are as in Figure 1.
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defined in equation (2), we have

z
(i)
t |z(i)

t−1 ∼ π
(i)

z
(i)
t−1

,

(4)
y(i)
t |z(i)

t ∼ N
(
A

z
(i)
t

ỹ(i)
t ,�

z
(i)
t

)
.

Conditioned on the set of feature vectors, fi , for i = 1, . . . ,N , the model reduces to
a collection of N switching VAR processes, each defined on the finite state space
formed by the set of selected behaviors for that time series. The dynamic behaviors
θk = {Ak,�k} are shared across all time series. The feature-constrained transition
distributions π

(i)
j restrict time series i to select among the dynamic behaviors avail-

able in its feature vector fi . Each time step t is assigned to one behavior, according
to assignment variable z

(i)
t .

This proposed featural model has several advantages. By discovering the
pattern of behavior sharing (i.e., discovering fik = fjk = 1 for some pair of
sequences i, j ), we can interpret how the time series relate to one another.
Additionally, behavior-sharing allows multiple sequences to pool observations
from the same behavior, improving estimates of θk .

4. Prior specification. To maintain an unbounded set of possible behaviors,
we take a Bayesian nonparametric approach and define a model for a globally
shared set of infinitely many possible dynamic behaviors. We first explore a prior
specification for the corresponding infinite-dimensional feature vectors fi . We then
address the challenge of defining a prior on infinite-dimensional transition distri-
butions with support constraints defined by the feature vectors.

4.1. Feature vectors. Inferring the structure of behavior sharing within a
Bayesian framework requires defining a prior on the feature inclusion probabil-
ities. Since we want to maintain an unbounded set of possible behaviors (and thus
require infinite-dimensional feature vectors), we appeal to a Bayesian nonparamet-
ric featural model based on the beta process-Bernoulli process. Informally, one can
think of the formulation in our case as follows. A beta process (BP) random mea-
sure, B = ∑

k ωkδθk
, defines an infinite set of coin-flipping probabilities ωk—one

for each behavior θk . Each time series i is associated with a Bernoulli process re-
alization, Xi = ∑

k fikδθk
, that is the outcome of an infinite coin-flipping sequence

based on the BP-determined coin weights. The set of resulting heads (fik = 1) in-
dicates the set of selected behaviors, and implicitly defines an infinite-dimensional
feature vector fi .

The properties of the BP induce sparsity in the feature space by encouraging
sharing of features among the Bernoulli process realizations. Specifically, the total
sum of coin weights is finite, and only certain behaviors have large coin weights.
Thus, certain features are more prevalent, although feature vectors clearly need not
be identical. As such, this model allows infinitely many possible behaviors, while
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encouraging a sparse, finite representation and flexible sharing among time series.
The inherent conjugacy of the BP to the Bernoulli process allows for an analytic
predictive distribution for a feature vector based on the feature vectors observed
so far. As outlined in Section 6.1, this predictive distribution can be described via
the Indian buffet process [Ghahramani, Griffiths and Sollich (2006)] under certain
parameterizations of the BP. Computationally, this representation is key.

The beta process—Bernoulli process featural model. The BP is a special case
of a general class of stochastic processes known as completely random mea-
sures [Kingman (1967)]. A completely random measure B is defined such that
for any disjoint sets A1 and A2 (of some sigma algebra A on a measurable
space �), the corresponding random variables B(A1) and B(A2) are independent.
This idea generalizes the family of independent increments processes on the real
line. All completely random measures can be constructed from realizations of a
nonhomogenous Poisson process [up to a deterministic component; see Kingman
(1967)]. Specifically, a Poisson rate measure ν is defined on a product space �⊗R,
and a draw from the specified Poisson process yields a collection of points {θj ,ωj }
that can be used to define a completely random measure:

B =
∞∑

k=1

ωkδθk
.(5)

This construction assumes ν has infinite mass, yielding a countably infinite col-
lection of points from the Poisson process. Equation (5) shows that completely
random measures are discrete. Consider a rate measure defined as the product
of an arbitrary sigma-finite base measure B0, with total mass B0(�) = α, and
an improper beta distribution on the interval [0,1]. That is, on the product space
� ⊗ [0,1] we have the following rate measure:

ν(dω,dθ) = cω−1(1 − ω)c−1 dωB0(dθ),(6)

where c > 0 is referred to as a concentration parameter. The resulting com-
pletely random measure is known as the beta process, with draws denoted by
B ∼ BP(c,B0). With this construction, the weights ωk of the atoms in B lie in
the interval (0,1), thus defining our desired feature-inclusion probabilities.

The BP is conjugate to a class of Bernoulli processes [Thibaux and Jordan
(2007)], denoted by BeP(B), which provide our desired feature representation.
A realization

Xi |B ∼ BeP(B),(7)

with B an atomic measure, is a collection of unit-mass atoms on � located at some
subset of the atoms in B . In particular, fik ∼ Bernoulli(ωk) is sampled indepen-
dently for each atom θk in B , and then

Xi = ∑
k

fikδθk
.(8)
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One can visualize this process as walking along the atoms of a discrete measure B

and, at each atom θk , flipping a coin with probability of heads given by ωk . Since
the rate measure ν is σ -finite, Campbell’s theorem [Kingman (1993)] guarantees
that for α finite, B has finite expected measure resulting in a finite set of “heads”
(active features) in each Xi .

Computationally, Bernoulli process realizations Xi are often summarized by
an infinite vector of binary indicator variables fi = [fi1, fi2, . . .]. Using the BP
measure B to tie together the feature vectors encourages the Xi to share similar
features while still allowing significant variability.

4.2. Feature-constrained transition distributions. We seek a prior for transi-
tion distributions π (i) = {π(i)

k } defined on an infinite-dimensional state space, but
with positive support restricted to a finite subset specified by fi . Motivated by the
fact that Dirichlet-distributed probability mass functions can be generated via nor-
malized gamma random variables, for each time series i we define a doubly-infinite
collection of random variables:

η
(i)
jk |γ, κ ∼ Gamma

(
γ + κδ(j, k),1

)
.(9)

Here, the Kronecker delta function is defined by δ(j, k) = 0 when j �= k and
δ(k, k) = 1. The hyperparameters γ, κ govern Markovian state switching proba-
bilities. Using this collection of transition weight variables, denoted by η(i), we
define time-series-specific, feature-constrained transition distributions:

π
(i)
j = [η(i)

j1 η
(i)
j2 · · · ] � fi∑

k|fik=1 η
(i)
jk

,(10)

where � denotes the element-wise, or Hadamard, vector product. This construc-
tion defines π

(i)
j over the full set of positive integers, but assigns positive mass only

at indices k where fik = 1, constraining time series i to only transition among be-
haviors indicated by its feature vector fi . See Figure 2.

The preceding generative process can be equivalently represented via a sample
π̃

(i)
j from a finite Dirichlet distribution of dimension Ki = ∑

k fik , containing the

nonzero entries of π
(i)
j :

π̃
(i)
j |fi , γ, κ ∼ Dir

([γ, . . . , γ, γ + κ, γ, . . . , γ ]).(11)

This construction reveals that κ places extra expected mass on the self-transition
probability of each state, analogously to the sticky HDP-HMM [Fox et al.
(2011b)]. We also use the representation

π
(i)
j |fi , γ, κ ∼ Dir

([γ, . . . , γ, γ + κ, γ, . . .] � fi
)
,(12)

implying π
(i)
j = [π(i)

j1 π
(i)
j2 · · · ] has only a finite number of nonzero en-

tries π
(i)
jk . This representation is an abuse of notation since the Dirichlet distri-

bution is not defined for infinitely many parameters. However, the notation of
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equation (12) is useful in reminding the reader that the indices of π̃
(i)
j defined

by equation (11) are not over 1 to Ki , but rather over the Ki values of k such
that fik = 1. Additionally, this notation is useful for concise representations of the
posterior distribution.

We construct the model using the unnormalized transition weights η(i) instead
of just the proper distributions π (i) so that we may consider adding or removing
states when sampling from the nonparametric posterior. Working with η(i) here
simplifies expressions, since we need not worry about the normalization constraint
required with π (i).

4.3. VAR parameters. To complete the Bayesian model specification, a conju-
gate matrix-normal inverse-Wishart (MNIW) prior [cf., West and Harrison (1997)]
is placed on the shared collection of dynamic parameters θk = {Ak,�k}. Specifi-
cally, this prior is comprised of an inverse Wishart prior on �k and (conditionally)
a matrix normal prior on Ak :

�k|n0, S0 ∼ IW(n0, S0),
(13)

Ak|�k,M,L ∼ MN (Ak;M,�k,L),

with n0 the degrees of freedom, S0 the scale matrix, M the mean dynamic matrix,
and L a matrix that together with �k defines the covariance of Ak . This prior
defines the base measure B0 up to the total mass parameter α, which has to be
separately assigned (see Section 6.5). The MNIW density function is provided in
the supplemental article [Fox et al. (2014)].

5. Model overview. Our beta-process-based featural model couples the dy-
namic behaviors exhibited by different time series. We term the resulting model the
BP-autoregressive-HMM (BP-AR-HMM). Figure 3 provides a graphical model
representation. Considering the feature space (i.e., set of autoregressive parame-
ters) and the temporal dynamics (i.e., set of transition distributions) as separate
dimensions, one can think of the BP-AR-HMM as a spatio-temporal process com-
prised of a (continuous) beta process in space and discrete-time Markovian dy-
namics in time. The overall model specification is summarized as follows:

(1) Draw beta process realization B ∼ BP(c,B0):

B =
∞∑

k=1

ωkθk where θk = {Ak,�k}.

(2) For each sequence i from 1 to N :
(a) Draw feature vector fi |B ∼ BeP(B).
(b) Draw feature-constrained transition distributions

π
(i)
j |fi ∼ Dir

([
. . . , γ + δ(j, k)κ, . . .

] � fi
)
.
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FIG. 3. Graphical model representation of the BP-AR-HMM. For clarity, the feature-inclusion
probabilities, ωk , and VAR parameters, θk , of the beta process base measure B ∼ BP(c,B0) are
decoupled. Likewise, the Bernoulli process realizations Xi associated with each time series are com-
pactly represented in terms of feature vectors fi indexed over the θk ; here, fik |ωk ∼ Bernoulli(ωk).
See equation (5) and equation (8). The fi are used to define feature-constrained transition distri-

butions π
(i)
j |fi ∼ Dir([γ, . . . , γ, γ + κ, γ, . . .] � fi ). π (i) can also be written in terms of transition

weights η(i), as in equation (10). The state evolves as z
(i)
t |z(i)

t ∼ π
(i)

z
(i)
t

and defines conditionally VAR

dynamics for y(i)
t as in equation (4).

(c) For each time step t from 1 to Ti :
(i) Draw state sequence z

(i)
t |z(i)

t−1 ∼ π
(i)

z
(i)
t−1

.

(ii) Draw observations y(i)
t |z(i)

t ∼ N (A
z
(i)
t

ỹ(i)
t ,�

z
(i)
t

).

One can also straightforwardly consider conditionally independent emissions in
place of the VAR processes, resulting in a BP-HMM model.

6. MCMC posterior computations. In this section we develop an MCMC al-
gorithm which aims to produce posterior samples of the discrete indicator variables
(binary feature assignments F = {fi} and state sequences z = {z(i)}) underlying
the BP-AR-HMM. We analytically marginalize the continuous emission parame-
ters θ = {Ak,�k} and transition weights η = {η(i)}, since both have conditionally
conjugate priors. This focus on discrete parameters represents a major departure
from the samplers developed by Fox et al. (2009) and Hughes, Fox and Sudderth
(2012), which explicitly sampled continuous parameters and viewed z as auxiliary
variables.

Our focus on the discrete latent structure has several benefits. First, fixed feature
assignments F instantiate a set of finite AR-HMMs, so that dynamic programming
can be used to efficiently compute marginal likelihoods. Second, we can tractably
compute the joint probability of (F, z,y), which allows meaningful comparison of
configurations (F, z) with varying numbers K+ of active features. Such compari-
son is not possible when instantiating θ or η, since these variables have dimension
proportional to K+. Finally, our novel split-merge and data-driven birth moves



1292 FOX, HUGHES, SUDDERTH AND JORDAN

both consider adding new behaviors to the model, and we find that proposals for
fixed-dimension discrete variables are much more likely to be accepted than pro-
posals for high-dimensional continuous parameters. Split-merge proposals with
high acceptance rates are essential to the experimental successes of our method,
since they allow potentially large changes at each iteration.

At each iteration, we cycle among seven distinct sampler moves:

(1) (Section 6.4) Sample behavior-specific auxiliary variables: θ ,η|F, z.
(2) (Section 6.2) Sample shared features, collapsing state sequences: F|θ ,η.
(3) (Section 6.3) Sample each state sequence: z|F, θ ,η.
(4) (Section 6.5) Sample BP hyperparameters: α, c|F.
(5) (Section 6.5) Sample HMM transition hyperparameters: γ, κ|F,η.
(6) (Section 6.6) Propose birth/death moves on joint configuration: F, z.
(7) (Section 7) Propose split/merge move on joint configuration: F, z.

Note that some moves instantiate θ ,η as auxiliary variables to make computations
tractable and block sampling possible. However, we discard these variables after
step 5 and only propagate the core state space (F, z, α, c, γ, κ) across iterations.
Note also that steps 2–3 comprise a block sampling of F, z. Our MCMC steps
are detailed in the remainder of this section, except for split-merge moves which
are discussed in Section 7. Further information for all moves is also available in
the supplemental article [Fox et al. (2014)], including a summary of the overall
MCMC procedure in Algorithm D.1.

Computational complexity. The most expensive step of our sampler oc-
curs when sampling the entries of F (step 2). Sampling each binary entry re-
quires one run of the forward–backward algorithm to compute the likelihood
p(y(i)

1 : Ti
|fi ,η(i), θ); this dynamic programming routine has complexity O(TiK

2
i ),

where Ki is the number of active behavior states in sequence i and Ti is the number
of time steps. Computation may be significantly reduced by caching the results of
some previous sampling steps, but this remains the most costly step. Resampling
the N state sequences z (step 3) also requires an O(TiK

2
i ) forward–backward rou-

tine, but harnesses computations made in sampling F and is only performed N

times rather than NK , where K is the total number of instantiated features. The
birth/death moves (step 6) basically only involve the computational cost of sam-
pling the state sequences. Split-merge moves (step 7) are slightly more complex,
but again primarily result in repeated resampling of state sequences. Note that
although each iteration is fairly costly, the sophisticated sampling updates devel-
oped in the following sections mean that fewer iterations are needed to achieve
reasonable posterior estimates.

Conditioned on the set of instantiated features F and behaviors θ , the model
reduces to a collection of independent, finite AR-HMMs. This structure could be
harnessed to distribute computation, and parallelization of our sampling scheme is
a promising area for future research.
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6.1. Background: The Indian buffet process. Sampling the features F requires
some prerequisite knowledge. As shown by Thibaux and Jordan (2007), marginal-
izing over the latent beta process B in the beta process-Bernoulli process hierarchy
and taking c = 1 induces a predictive distribution on feature indicators known as
the Indian buffet process (IBP) [Ghahramani, Griffiths and Sollich (2006)].4 The
IBP is based on a culinary metaphor in which customers arrive at an infinitely long
buffet line of dishes (features). The first arriving customer (time series) chooses
Poisson(α) dishes. Each subsequent customer i selects a previously tasted dish k

with probability mk/i proportional to the number of previous customers mk to
sample it, and also samples Poisson(α/i) new dishes.

For a detailed derivation of the IBP from the beta process-Bernoulli process
formulation of Section 4.1, see Supplement A of Fox et al. (2014).

6.2. Sampling shared feature assignments. We now consider sampling each
sequence’s binary feature assignment fi . Let F−ik denote the set of all feature in-
dicators excluding fik , and K−i+ be the number of behaviors used by all other time
series. Some of the K−i+ features may also be shared by time series i, but those
unique to this series are not included. For simplicity, we assume that these behav-
iors are indexed by {1, . . . ,K−i+ }. The IBP prior differentiates between this set of
“shared” features that other time series have already selected and those “unique”
to the current sequence and appearing nowhere else. We may safely alter sequence
i’s assignments to shared features {1, . . . ,K−i+ } without changing the number of
behaviors present in F. We give a procedure for sampling these entries below.
Sampling unique features requires adding or deleting features, which we cover in
Section 6.6.

Given observed data y(i)
1 : Ti

, transition variables η(i), and emission parameters θ ,

the feature indicators fik for the ith sequence’s shared features k ∈ {1, . . . ,K−i+ }
have posterior distribution

p
(
fik|F−ik,y(i)

1 : Ti
,η(i), θ

) ∝ p
(
fik|F−ik)p(

y(i)
1 : Ti

|fi ,η(i), θ
)
.(14)

Here, the IBP prior implies that p(fik = 1|F−ik) = m−i
k /N , where m−i

k denotes the
number of sequences other than i possessing k. This exploits the exchangeability
of the IBP [Ghahramani, Griffiths and Sollich (2006)], which follows from the BP
construction [Thibaux and Jordan (2007)].

When sampling binary indicators like fik , Metropolis–Hastings proposals can
mix faster [Frigessi et al. (1993)] and have greater efficiency [Liu (1996)] than
standard Gibbs samplers. To update fik given F−ik , we thus use equation (14) to
evaluate a Metropolis–Hastings proposal which flips fik to the binary complement

4Allowing any c > 0 induces a two-parameter IBP with a similar construction.
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f̄ = 1 − f of its current value f :

fik ∼ ρ(f̄ |f )δ(fik, f̄ ) + (
1 − ρ(f̄ |f )

)
δ(fik, f ),

(15)

ρ(f̄ |f ) = min
{p(fik = f̄ |F−ik,y(i)

1 : Ti
,η(i), θ1 : K−i+

, c)

p(fik = f |F−ik,y(i)
1 : Ti

,η(i), θ1 : K−i+
, c)

,1
}
.

To compute likelihoods p(y(i)
1 : Ti

|fi ,η(i), θ), we combine fi and η(i) to construct the

transition distributions π
(i)
j as in equation (10), and marginalize over the possible

latent state sequences by applying a forward–backward message passing algorithm
for AR-HMMs [see Supplement C.2 of Fox et al. (2014)]. In each sampler itera-
tion, we apply these proposals sequentially to each entry of the feature matrix F,
visiting each entry one at a time and retaining any accepted proposals to be used
as the fixed F−ik for subsequent proposals.

6.3. Sampling state sequences z. For each sequence i contained in z, we
block sample z(i)

1 : Ti
in one coherent move. This is possible because fi de-

fines a finite AR-HMM for each sequence, enabling dynamic programming
with auxiliary variables π (i), θ . We compute backward messages mt+1,t (z

(i)
t ) ∝

p(y(i)
t+1 : Ti

|z(i)
t , ỹ(i)

t ,π (i), θ), and recursively sample each z
(i)
t :

z
(i)
t |z(i)

t−1,y(i)
1 : Ti

,π (i), θ ∼ π
(i)

z
(i)
t−1

(
z
(i)
t

)
N

(
y(i)
t ;A

z
(i)
t

ỹ(i)
t ,�

z
(i)
t

)
mt+1,t

(
z
(i)
t

)
.(16)

Supplement Algorithm D.3 of Fox et al. (2014) explains backward-filtering,
forward-sampling in detail.

6.4. Sampling auxiliary parameters: θ and η. Given fixed features F and state
sequences z, the posterior over auxiliary parameters factorizes neatly:

p(θ ,η|F, z,y) =
K+∏
k=1

p
(
θk|{y(i)

t : z(i)
t = k

}) N∏
i=1

p
(
η(i)|z(i), fi

)
.(17)

We can thus sample each θk and η(i) independently, as outlined below.

Transition weights η(i). Given state sequence z(i) and features fi , sequence i’s
Markov transition weights η(i) have posterior distribution

p
(
η

(i)
jk |z(i), fij = 1, fik = 1

) ∝ (η
(i)
jk )

n
(i)
jk+γ+κδ(j,k)−1

e
−η

(i)
jk

[∑k′ : fik′=1 η
(i)
jk′ ]n

(i)
j

,(18)

where n
(i)
jk counts the transitions from state j to k in z

(i)
1 : Ti

, and n
(i)
j = ∑

k n
(i)
jk

counts all transitions out of state j .
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Although the posterior in equation (18) does not belong to any standard para-
metric family, simulating posterior draws is straightforward. We use a simple
auxiliary variable method which inverts the usual gamma-to-Dirichlet scaling
transformation used to sample Dirichlet random variables. We explicitly draw π

(i)
j ,

the normalized transition probabilities out of state j , as

π
(i)
j |z(i) ∼ Dir

([
. . . , γ + n

(i)
jk + κδ(j, k), . . .

] � fi
)
.(19)

The unnormalized transition parameters η
(i)
j are then given by the deterministic

transformation η
(i)
j = C

(i)
j π

(i)
j , where

C
(i)
j ∼ Gamma

(
K

(i)
+ γ + κ,1

)
.(20)

Here, K
(i)
+ = ∑

k fik . This sampling process ensures that transition weights η(i)

have magnitude entirely informed by the prior, while only the relative proportions
are influenced by z(i). Note that this is a correction to the posterior for η

(i)
j pre-

sented in the earlier work of Fox et al. (2009).

Emission parameters θk . The emission parameters θk = {Ak,�k} for each fea-
ture k have the conjugate matrix normal inverse-Wishart (MNIW) prior of equa-
tion (13). Given z, we form θk’s MNIW posterior using sufficient statistics from
observations assigned to state k across all sequences i and time steps t . Letting
Yk = {y(i)

t : z(i)
t = k} and Ỹk = {ỹ(i)

t : z(i)
t = k}, define

S
(k)
ỹỹ

= ∑
(t,i)|z(i)

t =k

ỹ(i)
t ỹ(i)T

t + L, S
(k)
yỹ

= ∑
(t,i)|z(i)

t =k

y(i)
t ỹ(i)T

t + ML,

(21)
S(k)

yy = ∑
(t,i)|z(i)

t =k

y(i)
t y(i)T

t + MLMT , S
(k)
y|ỹ = S(k)

yy − S
(k)
yỹ

S
−(k)
ỹỹ

S
(k)T

ỹỹ
.

Using standard MNIW conjugacy results, the posterior is then

Ak|�k,Yk, Ỹk ∼ MN
(
Ak;S(k)

yỹ
S

−(k)
ỹỹ

,�k, S
(k)
ỹỹ

)
,

(22)
�k|Yk, Ỹk ∼ IW

(|Yk| + n0, S
(k)
y|ỹ + S0

)
.

Through sharing across multiple time series, we improve inferences about
{Ak,�k} compared to endowing each sequence with separate behaviors.

6.5. Sampling the BP and transition hyperparameters. We additionally place
priors on the transition hyperparameters γ and κ , as well as the BP parameters α

and c, and infer these via MCMC. Detailed descriptions of these sampling steps
are provided in Supplement G.2 of Fox et al. (2014).
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6.6. Data-driven birth–death proposals of unique features. We now consider
exploration of the unique features associated with each sequence. One might con-
sider a birth–death version of a reversible jump proposal [Green (1995)] that ei-
ther adds one new feature (“birth”) or eliminates an existing unique feature. This
scheme was considered by Fox et al. (2009), where each proposed new feature k∗
(HMM state) was associated with an emission parameter θk∗ and associated tran-
sition parameters {η(i)

jk∗, η
(i)
k∗j } drawn from their priors. However, such a sampling

procedure can lead to extremely low acceptance rates in high-dimensional cases
since it is unlikely that a random draw of θk∗ will better explain the data than
existing, data-informed parameters. Recall that for a BP-AR-HMM with VAR(1)
likelihoods, each θk = {Ak,�k} has d2 + d(d + 1)/2 scalar parameters. This issue
was addressed by the data-driven proposals of Hughes, Fox and Sudderth (2012),
which used randomly selected windows of data to inform the proposal distribu-
tion for θk∗ . Tu and Zhu (2002) employed a related family of data-driven MCMC
proposals for a very different image segmentation model.

The birth–death frameworks of Fox et al. (2009) and Hughes, Fox and Sudderth
(2012) both perform such moves by marginalizing out the state sequence z(i) and
modifying the continuous HMM parameters θ ,η. Our proposed sampler avoids
the challenge of constructing effective proposals for θ ,η by collapsing away these
high-dimensional parameters and only proposing modifications to the discrete as-
signment variables F, z, which are of fixed dimension regardless of the dimension-
ality of the observations y(i)

t . Our experiments in Section 9 show the improved
mixing of this discrete assignment approach over previously proposed alternative
samplers.

At a high level, our birth–death moves propose changing one binary entry in fi ,
combined with a corresponding change to the state sequence z(i). In particular,
given a sequence i with Ki active features (of which ni = Ki − K−i+ are unique),
we first select the type of move (birth or death). If ni is empty, we always propose
a birth. Otherwise, we propose a birth with probability 1

2 and a death of unique
feature k with probability 1

2ni
. We denote this proposal distribution as qf (f∗i |fi ).

Once the feature proposal is selected, we then propose a new state sequence con-
figuration z∗(i).

Efficiently drawing a proposed state sequence z∗(i) requires the backward-
filtering, forward-sampling scheme of equation (16). To perform this dynamic
programming we deterministically instantiate the HMM transition weights and
emission parameters as auxiliary variables: η̂, θ̂ . These quantities are determin-
istic functions of the conditioning set used solely to define the proposal and are
not the same as the actual sampled variables used, for example, in steps 1–5 of
the algorithm overview. The variables are discarded before subsequent sampling
stages. Instantiating these variables allows efficient collapsed proposals of discrete
indicator configuration (F∗, z∗). To define good auxiliary variables, we harness the
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data-driven ideas of Hughes, Fox and Sudderth (2012). An outline is provided be-
low with a detailed summary and formal algorithmic presentation in Supplement E
of Fox et al. (2014).

Birth proposal for z∗(i). During a birth, we create a new state sequence z∗(i)

that can use any features in f∗i , including the new “birth” feature k∗. To construct
this proposal, we utilize deterministic auxiliary variables θ̂ , η̂(i). For existing fea-
tures k such that fik = 1, we set η̂

(i)
kj to the prior mean of η

(i)
kj and θ̂k to the posterior

mean of θk given all data in any sequence assigned to k in the current sample z(i).
For new features k∗, we can similarly set η̂

(i)
k∗j to the prior mean. For θ̂k∗ , however,

we use a data-driven construction since using the vague MNIW prior mean would
make this feature unlikely to explain any data at hand.

The resulting data-driven proposal for z(i) is as follows. First, we choose a
random subwindow W of the current sequence i. W contains a contiguous region
of time steps within {1,2, . . . , Ti}. Second, conditioning on the chosen window,
we set θ̂k∗ to the posterior mean of θk given the data in the window {y(i)

t : t ∈ W }.
Finally, given auxiliary variables θ̂, η̂(i) for all features, not just the newborn k∗, we
sample the proposal z∗(i) using the efficient dynamic programming algorithm for
block-sampling state sequences. This sampling allows any time step in the current
sequence to be assigned to the new feature, not just those in W , and similarly does
not force time steps in W to use the new feature k∗. These properties maintain
reversibility. We denote this proposal distribution by qz-birth(z∗|F∗, z,y).

Death proposal for z∗(i). During a death move, we propose a new state se-
quence z∗(i) that only uses the reduced set of behaviors in f∗i . This requires de-
terministic auxiliary variables θ̂, η̂(i) constructed as in the birth proposal, but here
only for the features in f∗i which are all already existing. Again, using these quan-
tities we construct the proposed z∗(i) via block sampling and denote the proposal
distribution by qz-death(z∗|F∗, z,y).

Acceptance ratio. After constructing the proposal, we decide to accept or re-
ject via the Metropolis–Hastings ratio with probability min(1, ρ), where for a birth
move

ρbirth-in-seq-i = p(y, z∗, f∗i )
p(y, z, fi)

qz-death(z|F, z∗,y)

qz-birth(z∗|F∗, z,y)

qf(fi |f∗i )
qf(f∗i |fi )

.(23)

Note that evaluating the joint probability p(y, z, fi) of a new configuration in the
discrete assignment space requires considering the likelihood of all sequences,
rather than just the current one, because under the BP-AR-HMM collapsing over θ
induces dependencies between all data time steps assigned to the same feature.
This is why we use notation z, even though our proposals only modify variables
associated with sequence i. The sufficient statistics required for this evaluation are
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needed for many other parts of our sampler, so in practice the additional com-
putational cost is negligible compared to previous birth–death approaches for the
BP-AR-HMM.

Finally, we note that we need not account for the random choice of the window
W in the acceptance ratio of this birth–death move. Each possible W is chosen
independently of the current sampler configuration, and each choice defines a valid
transition kernel over a reversible pair of birth–death moves satisfying detailed
balance.

7. Split-merge proposals. The MCMC algorithm presented in Section 6 de-
fines a correct and tractable inference scheme for the BP-AR-HMM, but the local
one-at-a-time sampling of feature assignments can lead to slow mixing rates. In
this section we propose split-merge moves that allow efficient exploration of large
changes in assignments, via simultaneous changes to multiple sequences, and can
be interleaved with the sampling updates of Section 6. Additionally, in Section 7.3
we describe how both split-merge and birth–death moves can be further improved
via a modified annealing procedure that allows fast mixing during sampler burn-in.

7.1. Review: Split-merge for Dirichlet processes. Split-merge MCMC meth-
ods for nonparametric models were first employed by Jain and Neal (2004) in
the context of Dirichlet process (DP) mixture models with conjugate likelihoods.
Conjugacy allows samplers to operate directly on discrete partitions of observa-
tions into clusters, marginalizing emission parameters. Jain and Neal use restricted
Gibbs (RG) sampling to create reversible proposals that split a single cluster km

into two (ka, kb) or merge two clusters into one.
To build an initial split, the RG sampler first assigns items originally in cluster

km at random to either ka or kb. Starting from this partition, the sampler performs
one-at-a-time Gibbs updates, forgetting an item’s current cluster and reassigning
to either ka or kb conditioned on the remaining partitioned data. A proposed new
configuration is obtained after several sweeps. For nonconjugate models, more
sophisticated proposals are needed to also instantiate emission parameters [Jain
and Neal (2007)].

Even in small data sets, performing many sweeps for each RG proposal is of-
ten necessary for good performance [Jain and Neal (2004)]. For large data sets,
however, requiring many sweeps for a single proposal is computationally expen-
sive. An alternative method, sequential allocation [Dahl (2005)], replaces the ran-
dom initialization of RG. Here, two randomly chosen items “anchor” the initial
assignments of the two new clusters ka, kb. Remaining items are then sequentially
assigned to either ka or kb one at a time, using RG moves conditioning only on
previously assigned data. This creates a proposed partition after only one sam-
pling sweep. Recent work has shown some success with sequentially allocated
split-merge moves for a hierarchical DP topic model [Wang and Blei (2012)].
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Beyond the DP mixture model setting, split-merge MCMC moves are not well
studied. Both Meeds et al. (2006) and Mørup, Schmidt and Hansen (2011) mention
adapting an RG procedure for relational models with latent features based on the
beta process. However, neither work provides details on constructing proposals,
and both lack experimental validation that split-merge moves improve inference.

7.2. Split-merge MCMC for the BP-AR-HMM. In standard mixture models,
such as considered by Jain and Neal (2004), a given data item i is associated
with a single cluster ki , so selecting two anchors i and j is equivalent to se-
lecting two cluster indices ki, kj . However, in feature-based models such as the
BP-AR-HMM, each data item i possesses a collection of features indicated by fi .
Therefore, our split-merge requires a mechanism not only for selecting anchors,
but also for choosing candidate features to split or merge from fi , fj . After propos-
ing modified feature vectors, the associated state sequences must also be updated.
Following the motivations for our data-driven birth–death proposals, our split-
merge proposals create new feature matrices F∗ and state sequences z∗, collapsing
away HMM parameters θ ,η. Figure 4 illustrates F and z before and after a split
proposal. Motivated by the efficiencies of sequential allocation [Dahl (2005)], we
adopt a sequential approach. Although a RG approach that samples all variables
(F, z, θ,η) is also possible and relatively straightforward, our experiments [Sup-
plement I of Fox et al. (2014)] show that our sequential collapsed proposals are
vastly preferred. Intuitively, constructing high acceptance rate proposals for θ ,η

can be very difficult since each behavior-specific parameter is high dimensional.

FIG. 4. Illustration of split-merge moves for the BP-AR-HMM, which alter binary feature matrix F
(white indicates present feature) and state sequences z. We show F, z before (top) and after (bottom)
feature km (yellow) is split into ka, kb (red, orange). An item possessing feature km can have either
ka, kb , or both after the split, and its new z sequence is entirely resampled using any features avail-
able in fi . An item without km cannot possess ka, kb , and its z does not change. Note that a split
move can always be reversed by a merge.
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Selecting anchors. Following Dahl (2005), we first select distinct anchor data
items i and j uniformly at random from all time series. The fixed choice of i, j

defines a split-merge transition kernel satisfying detailed balance [Tierney (1994)].
Next, we select from each anchor one feature it possesses, denoted ki, kj , respec-
tively. This choice determines the proposed move: we merge ki, kj if they are
distinct, and split ki = kj into two new features otherwise.

Selecting ki, kj uniformly at random is problematic. First, in data sets with
many features choosing ki = kj is unlikely, making split moves rare. We need
to bias the selection process to consider splits more often. Second, in a reasonably
fit model most feature pairs will not make a sensible merge. Selecting a pair that
explains similar data is crucial for efficiency. We thus develop a proposal distribu-
tion which first draws ki uniformly from the positive entries in fi , and then selects
kj given fixed ki as follows:

qk(ki, kj |fi , fj ) = Unif
(
ki |{k :fik = 1})q(kj |ki, fj ),(24)

q(kj = k|ki, fj ) ∝
⎧⎪⎨
⎪⎩

2Rjfjk, if k = ki ,

fjk

m(Yki
,Yk)

m(Yki
)m(Yk)

, otherwise,
(25)

where Yk denotes all observed data in any segment assigned to k (determined
by z) and m(·) denotes the marginal likelihood of pooled data observations under

the emission distribution. A high value for the ratio
m(Yki

,Yk)

m(Yki
)m(Yk)

indicates that the

model prefers to explain all data assigned to ki, kj together rather than use a sepa-
rate feature for each. This choice biases selection toward promising merge candi-

dates, leading to higher acceptance rates. We set Rj = ∑
kj �=ki

fjkj

m(Yki
,Ykj

)

m(Yki
)m(Ykj

)
to

ensure the probability of a split (when possible) is 2/3.
For the VAR likelihood of interest, the marginal likelihood m(Yk) of all data

assigned to feature k, integrating over parameters θk = {Ak,�k}, is

m(Yk) = p(Yk|M,L,S0, n0)

=
∫ ∫

p(Yk|Ak,�k)p(Ak|M,�k,L)p(�k|n0, S0) d�k dAk(26)

= 1

(2π)(nkd)/2 · �d((nk + n0)/2)

�d(n0/2)
· |S0|n0/2

|S(k)
y|ȳ |(nk+n0)/2

· |L|1/2

|S(k)
ȳȳ |1/2

,

where �d(·) is the d-dimensional multivariate gamma function, | · | denotes the
determinant, nk counts the number of observations in set Yk , and sufficient statis-
tics S

(k)·,· are defined in equation (21). Further details on this feature selection pro-
cess are given in Supplement F.1, especially Algorithm F.2, of Fox et al. (2014).

Once ki, kj are fixed, we construct the candidate state F∗, z∗ for the proposed
move. This construction depends on whether a split or merge occurs, as detailed
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below. Recall from Figure 4 that we only alter f�, z(�) for data sequences � which
possess either ki or kj . We call this set of items the active set S . Items not in the
active set are unaltered by our proposals.

Split. Our split proposal is defined in Algorithm 1. Iterating through a random
permutation of items � in the active set S , we sample {f ∗

�ka
, f ∗

�kb
} from its condi-

tional posterior given previously visited items in S , requiring that � must possess
at least one of the new features ka, kb. We then block sample its state sequence
z∗(�) given f∗� . After sampling all non-anchor sequences in S , we finally sample
{f∗i , z∗(i)} and {f∗j , z∗(j)} for anchor items i, j , enforcing f ∗

ika
= 1 and f ∗

jkb
= 1 so

the move remains reversible under a merge. This does not force z∗
i to use ka nor z∗

j

to use kb.
The dynamic programming recursions underlying these proposals use nonran-

dom auxiliary variables in a similar manner to the data-driven birth–death pro-
posals. In particular, the HMM transition weights η̂(�) are set to the prior mean
of η(�). The HMM emission parameters θ̂k are set to the posterior mean of θk

Algorithm 1 Construction of candidate split configuration (F, z), replacing feature
km with new features ka, kb via sequential allocation

1: fi,[ka,kb] ← [1 0] z
(i)

t : z
(i)
t =km

← ka use anchor i to create feature ka

2: fj,[ka,kb] ← [0 1] z
(j)

t : z
(j)
t =km

← kb use anchor j to create feature kb

3: θ̂ ← E[θ |y, z] [Algorithm E.4] set emissions to posterior mean

4: η̂(�) ← E[η(�)], � ∈ S [Algorithm E.4] set transitions to prior mean

5: Sprev = {i, j} initialize set of previously visited items

6: for nonanchor items � in random permutation of active set S :

7: f�,[kakb] ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0 1]
[1 0] ∝ p(f�,[kakb]|FSprev,[kakb])p(y(�)|f�, θ̂ , η̂(�)

)

[1 1]
[Algorithm F.4]

8: z(�) ∼ p(z(�)|y(�), f�, θ̂ , η̂(�)) [Algorithm D.3]

9: add � to Sprev add latest sequence to set of visited items

10: for k = ka, kb: θ̂k ← E[θk|{y(n)
t : z(n)

t = k,n ∈ Sprev}]

11: fi,[kakb] ∼
{ [1 0]

[1 1]
fj,[kakb] ∼

{ [0 1]
[1 1]

finish by sampling f, z for anchors

12: z(i) ∼ p(z(i)|y(i), fi , θ̂ , η̂(i)) z(j) ∼ p(z(j)|y(j), fj , θ̂ , η̂(j))

Note: Algorithm references found in the supplemental article [Fox et al. (2014)]
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given the current data assigned to behavior k in z across all sequences. For new
states k∗ ∈ {ka, kb}, we initialize θ̂k∗ from the anchor sequences and then update
to account for new data assigned to k∗ after each item �. As before, η̂, θ̂ are de-
terministic functions of the conditioning set used to define the collapsed proposals
for F∗, z∗; they are discarded prior to subsequent sampling stages.

Merge. To merge ka, kb into a new feature km, constructing F∗ is deterministic:
we set f ∗

�km
= 1 for � ∈ S , and 0 otherwise. We thus need only to sample z∗

� for

items in S . We use a block sampler that conditions on f∗�, θ̂, η̂(�), where again
θ̂, η̂(�) are auxiliary variables.

Accept–reject. After drawing a candidate configuration (F∗, z∗), the final step
is to compute a Metropolis–Hastings acceptance ratio ρ. Equation (27) gives the
ratio for a split move which creates features ka, kb from km:

ρsplit = p(y,F∗, z∗)
p(y,F, z)

qmerge(F, z|y,F∗, z∗, ka, kb)

qsplit(F∗, z∗|y,F, z, km)

qk(ka, kb|y,F∗, z∗, i, j)

qk(km, km|y,F, z, i, j)
.(27)

Recall that our sampler only updates discrete variables F, z and marginalizes
out continuous HMM parameters η, θ . Our split-merge moves are therefore only
tractable with conjugate emission models such as the VAR likelihood and MNIW
prior. Proposals which instantiate emission parameters θ , as in Jain and Neal
(2007), would be required in the nonconjugate case.

For complete split-merge algorithmic details, consult Supplement F of Fox et al.
(2014). In particular, we emphasize that the nonuniform choice of features to split
or merge requires some careful accounting, as does the correct computation of the
reverse move probabilities. These issues are discussed in the supplemental arti-
cle [Fox et al. (2014)].

7.3. Annealing MCMC proposals. We have presented two novel MCMC
moves for adding or deleting features in the BP-AR-HMM: split-merge and birth–
death moves. Both propose a new discrete variable configuration �∗ = (F∗, z∗)
with either one more or one fewer feature. This proposal is accepted or rejected
with probability min(1, ρ), where ρ has the generic form

ρ = p(y,�∗)
p(y,�)

q(�|�∗,y)

q(�∗|�,y)
.(28)

This Metropolis–Hastings ratio ρ accounts for improvement in joint probability
[via the ratio of p(·) terms] and the requirement of reversibility [via the ratio of
q(·) terms]. We call this latter ratio the Hastings factor. Reversibility ensures that
detailed balance is satisfied, which is a sufficient condition for convergence to the
true posterior distribution.
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The reversibility constraint can limit the effectiveness of our proposal frame-
work. Even when a proposed configuration �∗ results in better joint probability,
its Hastings factor can be small enough to cause rejection. For example, consider
any merge proposal. Reversing this merge requires returning to the original con-
figuration of the feature matrix F via a split proposal. Ignoring anchor sequence
constraints for simplicity, split moves can produce roughly 3|S| possible feature
matrices, since each sequence in the active set S could have its new features ka, kb

set to [0 1], [1 0], or [1 1]. Returning to the exact original feature matrix out of
the many possibilities can be very unlikely. Even though our proposals use data
wisely, the vast space of possible split configurations means the Hastings factor
will always be biased toward rejection of a merge move.

As a remedy, we recommend annealing the Hastings factor in the acceptance
ratio of both split-merge and data-driven birth–death moves. That is, we use a
modified acceptance ratio

ρ = p(y,�∗)
p(y,�)

[
q(�|�∗,y)

q(�∗|�,y)

]1/Ts

,(29)

where Ts indicates the “temperature” at iteration s. We start with a temperature
that is very large, so that 1

Ts
≈ 0 and the Hastings factor is ignored. The resulting

greedy stochastic search allows rapid improvement from the initial configuration.
Over many iterations, we gradually decrease the temperature toward 1. After a
specified number of iterations we fix 1

Ts
= 1, so that the Hastings factor is fully

represented and the sampler is reversible.
In practice, we use an annealing schedule that linearly interpolates 1

Ts
between

0 and 1 over the first several thousand iterations. Our experiments in Section 9
demonstrate improvement in mixing rates based on this annealing.

8. Related work. Defining the number of dynamic regimes presents a chal-
lenging problem in deploying Markov switching processes such as the AR-HMM.
Previously, Bayesian nonparametric approaches building on the hierarchical
Dirichlet process (HDP) [Teh et al. (2006)] have been proposed to allow uncer-
tainty in the number of regimes by defining Markov switching processes on infi-
nite state spaces [Beal, Ghahramani and Rasmussen (2001), Teh et al. (2006), Fox
et al. (2011a, 2011b)]. See Fox et al. (2010) for a recent review. However, these
formulations focus on a single time series, whereas in this paper our motivation is
analyzing multiple time series. A naïve approach to this setting is to simply couple
all time series under a shared HDP prior. However, this approach assumes that the
state spaces of the multiple Markov switching processes are exactly shared, as are
the transitions among these states. As demonstrated in Section 9 as well as our
extensive toy data experiments in Supplement H of Fox et al. (2014), such strict
sharing can limit the ability to discover unique dynamic behaviors and reduces
predictive performance.



1304 FOX, HUGHES, SUDDERTH AND JORDAN

In recent independent work, Saria, Koller and Penn (2010) developed an al-
ternative model for multiple time series via the HDP-HMM. Their time series
topic model (TSTM) describes coarse-scale temporal behavior using a finite set
of “topics,” which are themselves distributions on a common set of autoregressive
dynamical models. Each time series is assumed to exhibit all topics to some ex-
tent, but with unique frequencies and temporal patterns. Alternatively, the mixed
HMM [Altman (2007)] uses generalized linear models to allow the state transition
and emission distributions of a finite HMM to depend on arbitrary external covari-
ates. In experiments, this is used to model the differing temporal dynamics of a
small set of known time series classes.

More broadly, the problem we address here has received little previous attention,
perhaps due to the difficulty of treating combinatorial relationships with paramet-
ric models. There are a wide variety of models which capture correlations among
multiple aligned, interacting univariate time series, for example, using Gaussian
state space models [Aoki and Havenner (1991)]. Other approaches cluster time
series using a parametric mixture model [Alon et al. (2003)], or a Dirichlet pro-
cess mixture [Qi, Paisley and Carin (2007)], and model the dynamics within each
cluster via independent finite HMMs.

Dynamic Bayesian networks [Murphy (2002)], such as the factorial HMM
[Ghahramani and Jordan (1997)], define a structured representation for the latent
states underlying a single time series. Factorial models are widely used in applied
time series analysis [Duh (2005), Lehrach and Husmeier (2009)]. The infinite fac-
torial HMM [Van Gael, Teh and Ghahramani (2009)] uses the IBP to model a
single time series via an infinite set of latent features, each evolving according to
independent Markovian dynamics. Our work instead focuses on discovering be-
haviors shared across multiple time series.

Other approaches do not explicitly model latent temporal dynamics and instead
aim to align time series with consistent global structure [Aach and Church (2001)].
Motivated by the problem of detecting temporal anomalies, Listgarten et al. (2006)
describe a hierarchical Bayesian approach to modeling shared structure among a
known set of time series classes. Independent HMMs are used to encode nonlinear
alignments of observed signal traces to latent reference time series, but their states
do not represent dynamic behaviors and are not shared among time series.

9. Motion capture experiments. The linear dynamical system is a common
model for describing simple human motion [Hsu, Pulli and Popović (2005)], and
the switching linear dynamical system (SLDS) has been successfully applied to the
problem of human motion synthesis, classification, and visual tracking [Pavlović,
Rehg and MacCormick (2000), Pavlović et al. (1999)]. Other approaches develop
nonlinear dynamical models using Gaussian processes [Wang, Fleet and Hertz-
mann (2008)] or are based on a collection of binary latent features [Taylor, Hinton
and Roweis (2006)]. However, there has been little effort in jointly segmenting
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and identifying common dynamic behaviors among a set of multiple motion cap-
ture (MoCap) recordings of people performing various tasks. The ability to accu-
rately label frames of a large set of movies is useful for tasks such as querying an
extensive database without relying on expensive manual labeling.

The BP-AR-HMM provides a natural way to model complex MoCap data,
since it does not require manually specifying the set of possible behaviors. In
this section, we apply this model to sequences from the well-known CMU Mo-
Cap database [CMU (2009)]. Using the smaller 6-sequence data set from Figure 1,
we first justify our proposed MCMC algorithm’s benefits over prior methods for
inference, and also show improved performance in segmenting these sequences
relative to alternative parametric models. We then perform an exploratory analysis
of a larger 124-sequence MoCap data set.

9.1. Data preprocessing and hyperparameter selection. As described in Sec-
tion 2, we examine multivariate time series generated by 12 MoCap sensors. The
CMU data are recorded at a rate of 120 frames per second, and as a preprocessing
step we block-average and downsample the data using a window size of 12. We
additionally scale each component of the observation vector so that the empiri-
cal variance of the set of first-difference measurements, between observations at
neighboring time steps, is equal to one.

We fix the hyperparameters of the MNIW prior on θk in an empirical Bayesian
fashion using statistics derived from the sample covariance of the observed data.
These settings are similar to prior work [Hughes, Fox and Sudderth (2012)] and are
detailed in Supplement J of Fox et al. (2014). The IBP hyperparameters α, c and the
transition hyperparameters γ, κ are sampled at every iteration [see Supplement G
of Fox et al. (2014), which also discusses hyperprior settings].

9.2. Comparison of BP-AR-HMM sampler methods. Before comparing our
BP-AR-HMM to alternative modeling techniques, we first explore the effective-
ness of several possible MCMC methods for the BP-AR-HMM. As baselines, we
implement several previous methods that use reversible jump procedures and pro-
pose moves in the space of continuous HMM parameters. These include proposals
for θk from the prior [Fox et al. (2009), “Prior Rev. Jump”], and split-merge moves
interleaved with data-driven proposals for θk [Hughes, Fox and Sudderth (2012),
“SM + cDD”]. The birth–death moves for these previous approaches act on the
continuous HMM parameters, as detailed in Supplement E of Fox et al. (2014).
We compare these to our proposed split-merge and birth–death moves on the dis-
crete assignment variables from Section 6.6 (“SM + zDD”). Finally, we consider
annealing the SM + zDD moves (Section 7.3).

We run 25 chains of each method for 10 hours, which allows at least 10,000
iterations for each individual run. All split-merge methods utilize a parsimonious
initialization starting from just a single feature shared by all sequences. The Prior
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FIG. 5. Analysis of six MoCap sequences, comparing sampling methods. Baselines are reversible
jump proposals from the prior [Fox et al. (2009)], and split-merge moves interleaved with data-driven
proposals of continuous parameters (SM + cDD) [Hughes, Fox and Sudderth (2012)]. The proposed
sampler interleaves split-merge and data-driven discrete variable proposals (SM + zDD), with and
without annealing. Top row: Log-probability and Hamming distance for 25 runs of each method
over 10 hours. Bottom row: Estimated state sequence z for three fragments from distinct sequences
that humans label “arm circles” (left) or “jogging” (right). Each recovered feature is depicted by
one unique color and letter. We compare segmentations induced by the most probable samples from
the annealed SM + zDD (top) and Prior Rev. Jump (bottom) methods. The latter creates extraneous
features.

Rev. Jump algorithm rarely creates meaningful new features from this simple ini-
tialization, so instead we initialize with five unique features per sequence as recom-
mended in Fox et al. (2009). The results are summarized in Figure 5. We plot traces
of the joint log probability of data and sampled variables, p(y,F, z, α, c, γ, κ),
versus elapsed wall-clock time. By collapsing out the continuous HMM param-
eters θ ,η, the marginalized form allows direct comparison of configurations de-
spite possible differences in the number of instantiated features [see Supplement C
of Fox et al. (2014) for computation details]. We also plot the temporal evolution
of the normalized Hamming distance between the sampled segmentation z and
the human-provided ground truth annotation, using the optimal alignment of each
“true” state to a sampled feature. Normalized Hamming distance measures the
fraction of time steps where the labels of the ground-truth and estimated segmen-
tations disagree. To compute the optimal (smallest Hamming distance) alignment
of estimated and true states, we use the Hungarian algorithm.

With respect to both the log-probability and Hamming distance metrics, we find
that our SM + zDD inference algorithm with annealing yields the best results.
Most SM + zDD runs using annealing (blue curves) converge to regions of good
segmentations (in terms of Hamming distance) in under two hours, while no run of
the Prior Rev. Jump proposals (teal curves) comes close after ten hours. This indi-
cates the substantial benefit of using a data-driven proposal for adding new features
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efficiently. We also find that on average our new annealing approach (blue) im-
proves on the speed of convergence compared to the nonannealed SM + zDD runs
(green). This indicates that the Hastings factor penalty discussed in Section 7.3 is
preventing some proposals from escaping local optima. Our annealing approach
offers a practical workaround to overcome this issue, while still providing valid
samples from the posterior after burn-in.

Our split-merge and data-driven moves are critical for effectively creating and
deleting features to produce quality segmentations. In the lower half of Figure 5,
we show sampled segmentations z for fragments of the time series from distinct se-
quences that our human annotation labeled “arm-circle” or “jogging.” SM + zDD
with annealing successfully explains each action with one primary state reused
across all subjects. In contrast, the best Prior Rev. Jump run (in terms of joint
probability) yields a poor segmentation that assigns multiple unique states for one
common action, resulting in lower probability and much larger Hamming distance.
This over-segmentation is due to the 5-unique-features-per-sequence initialization
used for the Prior Rev. Jump proposal, but we found that a split-merge sampler
using the same initialization could effectively merge the redundant states. Our
merge proposals are thus effective at making global changes to remove redun-
dant features; such changes are extremely unlikely to occur via the local moves of
standard samplers. Overall, we find that our data-driven birth–death moves (zDD)
allow rapid creation of crucial new states, while the split-merge moves (SM) en-
able global improvements to the overall configuration.

Even our best segmentations have nearly 20% normalized Hamming distance
error. To disentangle issues of model mismatch from mixing rates, we investigated
whether the same SM + zDD sampler initialized to the true human segmentations
would retain all ground-truth labeled exercise behaviors after many iterations. (Of
course, such checks are only possible when ground-truth labels are available.) We
find that these runs prefer to delete some true unique features, consistently replac-
ing “K: side-bend” with “F: twist.” Manual inspection reveals that adding miss-
ing unique features back into the model actually decreases the joint probability,
meaning the true segmentation is not quite a global (or even local) mode for the
BP-AR-HMM. Furthermore, the result of these runs after burn-in yield similar
joint log-probability to the best run of our SM + zDD sampler initialized to just
one feature. We therefore conclude that our inference procedure is reasonably ef-
fective and that future work should concentrate on improving the local dynamical
model to better capture the properties of unique human behaviors.

9.3. Comparison to alternative time series models. We next compare the BP-
AR-HMM to alternative models to assess the suitability of our nonparametric
feature-based approach. As alternatives, we consider the Gaussian mixture model
(GMM) method of Barbič et al. (2004).5 We also consider a GMM on first-

5Barbič et al. (2004) also present an approach based on probabilistic principal component analysis
(PCA), but this method focuses primarily on change-point detection rather than behavior clustering.
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FIG. 6. Comparison of the BP-AR-HMM analysis using SM + zDD inference (Figure 5) to para-
metric HMM and Gaussian mixture model (GMM) approaches. Left: Hamming distance versus
number of GMM clusters/HMM states on raw observations and first-difference observations, with
the BP-AR-HMM segmentation and true feature count K = 12 (magenta, vertical dashed) shown for
comparison. Right: Feature matrices associated with (a) the human annotation, (b) BP-AR-HMM av-
eraged across MCMC samples, and maximum-likelihood assignment of the (c) GMM and (d) HMM
using first-difference observations and 12 states. We set feature k present in sequence i only if z(i) is
assigned to k for at least 2% of its time steps. White indicates a feature being present.

difference observations (which behaves like a special case of our autoregressive
model) and an HMM on both first-difference and raw observations. Note that both
the GMM and HMM models are parametric, requiring the number of states to be
specified a priori, and that both methods are trained via expectation maximization
(EM) to produce maximum likelihood parameter estimates.

In Figure 6 we compare all methods’ estimated segmentation accuracy, measur-
ing Hamming distance between the estimated label sequence z and human an-
notation on the six MoCap sequences. The GMM and HMM results show the
most likely of 25 initializations of EM using the HMM Matlab toolbox [Murphy
(1998)]. Our BP-AR-HMM Hamming distance comes from the best single MCMC
sample (in log probability) among all runs of SM + zDD with annealing in Fig-
ure 5. The BP-AR-HMM provides more accurate segmentations than the GMM
and HMM, and this remains true regardless of the number of states set for these
parametric alternatives.

The BP-AR-HMM’s accuracy is due to better recovery of the sparse behav-
ior sharing exhibited in the data. This is shown in Figure 6, where we compare
estimated binary feature matrices for all methods. In contrast to the sequence-
specific variability modeled by the BP-AR-HMM, both the GMM and HMM as-
sume that each sequence uses all possible behaviors, which results in the strong
vertical bands of white in almost all columns. Overall, the BP-AR-HMM produces
superior results due to its flexible feature sharing and allowance for unique behav-
iors.
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9.4. Exploring a large motion capture data set. Finally, we consider a larger
motion capture data set of 124 sequences, all “Physical Activities & Sports” ex-
amples from the CMU MoCap data set (including all sequences in our earlier
small data set). The median length is T = 95.5 times steps (minimum 16, maxi-
mum 1484). Human-produced segmentations for ground-truth comparison are not
available for data of this scale. Furthermore, analyzing this data is computationally
infeasible without split-merge and data-driven birth–death moves. For example,
the small data set required a special “5 unique features per sequence” initializa-
tion to perform well with Prior Rev. Jump proposals, but using this initialization
here would create over 600 features, requiring a prohibitively long sampling run
to merge related behaviors. In contrast, our full MCMC sampler (SM-zDD with
annealing) completed 2000 iterations in 24 hours. Starting from just one feature
shared by all 124 sequences, our SM + zDD moves identify a diverse set of 33 be-
haviors in this data set. A set of 16 representative behaviors are shown in Figure 7.
The resulting clusterings of time series segments represent coherent dynamic be-
haviors. Note that a full quantitative analysis of the segmentations produced on
this data set is not possible because we lack manual annotations. Instead, here

FIG. 7. Analysis of 124 MoCap sequences by interleaving of split-merge and data-driven MCMC
moves. 16 exemplars of the 33 recovered behaviors are displayed, with text label applied post-hoc
to aid human interpretation. Skeleton trajectories were visualized from contiguous segments of at
least 1 second of data as segmented by the sampled state sequence z(i). Boxes group segments from
distinct sequences assigned to the same behavior type.
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we simply illustrate that our improved inference procedure robustly explores the
posterior, enabling this large-scale analysis and producing promising results.

10. Discussion. We have presented a Bayesian nonparametric framework for
discovering dynamical behaviors common to multiple time series. Our formulation
reposes on the beta process, which provides a prior distribution on overlapping
subsets of binary features. This prior allows both for commonality and series-
specific variability in the use of dynamic behaviors. We additionally developed
an exact sampling algorithm for the BP-AR-HMM model, as well as novel split-
merge moves and data-driven birth moves which efficiently explore the unbounded
feature space. The utility of our BP-AR-HMM was demonstrated on the task of
segmenting a large set of MoCap sequences. Although we focused on switching
VAR processes, our approach (and sampling algorithms) could also be applied to
other Markov switching processes, such as switching linear dynamical systems.

The idea proposed herein of a feature-based approach to relating multiple time
series is not limited to nonparametric modeling. One could just as easily employ
these ideas within a parametric model that prespecifies the number of possible dy-
namic behaviors. We emphasize, however, that conditioned on the infinite feature
vectors of our BP-AR-HMM, which are guaranteed to be sparse, our model re-
duces to a collection of Markov switching processes on a finite state space. The
beta process simply allows for flexibility in the overall number of globally shared
behaviors, and computationally we do not rely on any truncations of this infinite
model.

One area of future work is further improving the split-merge proposals. Despite
the clear benefits of these proposals, we found sometimes that one “true” state
would be split among several recovered features. The root of the splitting issue is
twofold. One is the issue of mixing, which the annealing partially addresses, how-
ever, the fundamental issue of maintaining the reversibility of split-merge moves
limits the acceptance rates due to the combinatorial number of configurations. The
second is due to modeling issues. Our model assumes that the dynamic behav-
ior parameters (i.e., VAR parameters) are identical between time series and do
not change over time. This assumption can be problematic in grouping related dy-
namic behaviors and might be addressed via hierarchical models of behaviors or by
ideas similar to those of the dependent Dirchlet process [Griffin and Steel (2006),
MacEachern (1999)] that allows for time-varying parameters.

Overall, the MoCap results appeared to be fairly robust to examples of only
slightly dissimilar behaviors, such as squatting to different levels or twisting at
different rates. However, in cases such as the running motion where only portions
of the body moved in the same way while others did not, the behaviors can be split
(e.g., third jogging example in Figure 5). This observation could motivate local
partition processes [Dunson (2009, 2010)] rather than global partition processes.
That is, our current model assumes that the grouping of observations into behavior
categories occurs along all components of the observation vector rather than just
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a portion (e.g., lower body measurements). Allowing for greater flexibility in the
grouping of observations becomes increasingly important in high dimensions.

SUPPLEMENTARY MATERIAL

Details on prior specification, derivation of MCMC sampler, and further
experimental results (DOI: 10.1214/14-AOAS742SUPP; .pdf). We provide addi-
tional background material on our prior specification, including the beta process,
Indian buffet process, and inverse Wishart and matrix normal distributions. We
also detail aspects of our MCMC sampler, with further information on the birth–
death and split-merge proposals. Finally, we include synthetic data experiments
and details on the settings used for our MoCap experiments.
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