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2 E. FOX ET AL.

APPENDIX A: BETA PROCESS AND INDIAN BUFFET PROCESS

Here, we discuss the connections between the beta process (BP), the
Bernoulli process (BeP), and the Indian buffet process (IBP). The IBP is
the predictive distribution over the feature assignments generated by a BP-
BeP hierarchy, marginalizing away the global “coin-flipping” probabilities
ωk used to decide which objects possess which features. We make use of the
IBP in all of our MCMC inference algorithms for feature assignments. For
more information, consult (Ghahramani et al., 2006) for an introduction to
the IBP and (Thibaux and Jordan, 2007) for the formal relationship between
the IBP and the beta process.

Formally, we employ a beta-Bernoulli process hierarchy. Given mass pa-
rameter α, concentration parameter c, and base measure B0, we generate
feature assignments as

B | B0 ∼ BP(α, c,B0)

Xi | B ∼ BeP(B), i = 1, . . . , N.(A.1)

The random measure B (a beta process realization) defines a set of weights
on the global collection of features (which we interpret as human exercise
behaviors in our motion capture application). Each time series i is associated
with a draw from a Bernoulli process, Xi. The Bernoulli process realization
Xi =

∑

k fikδθk defines the feature vector fi for time series i, indicating its
available subset of global behaviors.

The probability Xi contains feature θk after having observed X1, . . . , Xi−1

is equal to the expected mass of that atom:

p(fik = 1 | X1, . . . , Xi−1) = EB|X1,...,Xi−1
[ωk],(A.2)

where EB[·] means to take the expectation with respect to the distribution of
B. Because beta process priors are conjugate to the Bernoulli process (Kim,
1999), the posterior distribution given N samples Xi ∼ BeP(B) is a beta
process with updated parameters:

B | X1, . . . , XN , B0, c ∼ BP

(

c+N,
c

c+N
B0 +

K+
∑

k=1

mk

c+N
δθk

)

.(A.3)

Here, mk denotes the number of time series Xi that select the kth feature
θk (i.e., fik = 1). For simplicity, we have reordered the feature indices to list
first the K+ features used by at least one time series.

Using the posterior distribution defined in Eq. (A.3), we consider the
discrete and continuous portions of the base measure separately.
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 3

Generically, for a discrete base measure B0 containing atoms, a sample
B ∼ BP(c, B0) necessarily contains each original atom θk with associated
weights

ωk ∼ Beta(cqk, c(1− qk)),(A.4)

where qk ∈ (0, 1) denotes the mass of the kth atom in B0. Based on the form
of Eq. (A.3), the discrete component is a collection of atoms at locations
θ1, . . . , θK+ , each with weight

qk =
mk

c+ i− 1
.(A.5)

For each instantiated feature k ∈ {1, . . . ,K+}, we have

ωk ∼ Beta((c+ i− 1)qk, (c+ i− 1)(1− qk))(A.6)

such that the expected weight is simply qk, implying that the ith time series
chooses feature k with probability proportional to mk, the number of time
series already possessing k. This result exactly matches the IBP generative
process: each successive “customer” possesses a pre-existing feature with
probability mk.

Again generically, given a continuous base measure B0, explicitly repre-
senting a beta process realization B ∼ BP(c, B0) as an atomic measure is
not straightforward due to the improper beta distribution on atom weights
ωk ∼ Beta(cbk, c(1− bk)), with bk = B0(θk) tending to zero for any continu-
ousB0. However, realizing a Bernoulli process drawXi ∼ BeP(B) is straight-
forward via the connection to Poisson processes: draw L ∼ Poisson(α) and

independently sample L atoms, with locations θℓ ∼
B0(θ)
α . All L atoms are

included in the Bernoulli process realization, yielding Xi =
∑L

ℓ=1 δθℓ .
In the case of the posterior distribution defined in Eq. (A.3), the continu-

ous portion of the posterior is c
c+i−1B0. The Poisson process defined by this

rate function generates

Poisson

(

c

c+ i− 1
B0(Θ)

)

= Poisson

(

c

c+ i− 1
α

)

(A.7)

new atoms in Xi that do not appear in X1, . . . , Xi−1. Following this argu-
ment, the first time series simply chooses Poisson(α) features. If we specialize
this process to c = 1, we arrive at the one-parameter IBP process for gener-
ating unique features. Each successive “customer” i possesses Poisson(α/i)
brand-new features.
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4 E. FOX ET AL.

APPENDIX B: MARGINAL PROBABILITY COMPUTATIONS

Here, we discuss two crucial probability computations for the BP-AR-
HMM. Both computations marginalize out key variables to simplify calcu-
lations and enable efficient posterior mixing in the sampler.

First, we show how to compute the marginal probability of a discrete

variable configuration: p(F , z,y). This computation is frequently used in
our sampler. It allows our efficient split-merge and data-driven birth moves
to avoid proposing values for high-dimensional continuous parameters. Fur-
thermore, this computation allows us to create trace plots of log probability
over time, allowing “apples to apples” comparison of different sampler con-
figurations even when they differ in the number of instantiated features.

Next, we show how to compute the probability of a single sequence’s ob-
served data p(y(i)|θ,η(i),fi), marginalizing away the discrete state sequence
z(i). This computation is critical for our sampler for the shared features of
the feature matrix F . Given the assigned features of the sequence i in ques-
tion, we show that this computation is a straight-forward application of the
sum-product (or forward-backward) dynamic programming algorithm.

B.1. Computing p(F , z, y) marginalizing over continuous pa-
rameters. Here, we discuss computing the joint posterior probability of
the collapsed configuration F , z; that is, the discrete assignments of features
and state sequences for all sequences. This marginalizes over the two sets of
continuous HMM parameters: transition weights η and emission parameters
θ.

p(F , z,y) =

∫

θ

∫

η
p(F , z,θ,η,y)(B.1)

Note that this marginalization is only tractable so long as the prior distri-
butions of both η, θ enjoy conjugacy.

Given the conditional independence assumptions encoded in our graphical
model, this computation decomposes in straight-forward fashion:

p(F , z,y) = p(F |α, c)p(y|z)
N
∏

i=1

p(z(i)|γ, κ)(B.2)

We discuss computation of each individual term below.

Feature matrix term p(F |α, c). We are given the two-parameter Indian
Buffet process prior on F with mass α and concentration c (often, we fix
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 5

c = 1 to recover the usual IBP). We assume the matrix F has N rows and
K+ columns with at least one non-zero entry.

Ghahramani et al. discuss computing this probability at length (Ghahra-
mani et al., 2006). The first step is to obtain the left-ordered form [F ] of
the matrix F . This maps every F onto a unique matrix whose non-zero
entries span only the first K+ columns. Since the columns of this matrix are
exchangeable, this mapping provides an equivalence class representation.

In practice, we achieve this form by rearranging the columns so that they
are sorted from largest to smallest according to the integer value each column
represents when interpreted as a base-2 number. For example, if the matrix
has N = 3 rows and its first column has binary assignments [1 0 1], we would
convert this into a decimal number h = 5, and sort all columns F·k by their
corresponding value h(F·k). This value h is sometimes called a “history”.

After rearranging the columns, we obtain a set of sufficient statistics: Kh

counts the number of columns (features) with “history” h, and mk counts
the number of sequences that possess each feature k.

Kh =

K+
∑

k=1

δh,h([F ]·k), mk =
N
∑

i=1

fik(B.3)

Given these statistics, Ghahramani et al. show (their eq. 21) that

p([F ]|α, c) =
αK+cK+

∏

h≥1Kh!
exp

[

−α
N
∑

i=1

c

c+ i− 1

]

K+
∏

k=1

B(mk, N −mk + c)

(B.4)

where B(·) is the beta function: B(x, y) = Γ(x)Γ(y)
Γ(x+y) for scalar real x, y.

State sequence term p(z(i)|γ, κ).. Under our proposed BP-AR-HMMmodel,
each sequence has independent transition parameters, so we handled the
computation for each sequence (indexed by i) separately. First we write:

p(z(i)|fi, γ, κ) =

∫

π(i)

p(z(i)|π(i))p(π(i)|fi, γ, κ)dπ
(i)(B.5)

Recall that π(i) given fi has a finite Dirichlet prior with Ki =
∑

k fik
states, and that p(z(i)|π(i)) is just a Markovian discrete distribution. Thus,
via conjugacy we can attain a closed-form expression. Let Q(~w) define the
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6 E. FOX ET AL.

normalization constant of a Dirichlet distribution given a vector of Ki pa-
rameters ~w.

Q([w1, . . . wKi
]) =

Γ(
∏Ki

k=1wk)
∑Ki

k=1 Γ(wk)
(B.6)

Then we have the following closed-form expression for the total probability

of discrete state sequence BFz(i). We use sufficient statistics N
(i)
kk′ to count

the number of transitions from k to k′ in the sequence z(i) = [z
(i)
1 , . . . z

(i)
Ti
].

p(z(i)|fi, γ, κ) =
Ki
∏

k=1

Q([. . . N
(i)
k,k′ + γ + δkk′κ . . .])

Q([. . . γ + δkk′κ . . .])
(B.7)

Observed data term p(y|z). Given the segmentation all sequences encoded
by z, we can aggregate sufficient statistics for all data assigned to each
distinct behavior and compute the likelihood under the prior base measure

B0(·) collapsing away the emission parameters θ. Let Y k = {y
(i)
t : z

(i)
t = k}

and Ỹ k = {ỹ
(i)
t : z

(i)
t = k}. Then for our auto-regressive model we have

p(y|z) =

K+
∏

k=1

∫

θk

p(Y k|Ỹk, θk)B0(θk)dθk(B.8)

Recall that each emission parameter is parameterized as θk = (Σk,Ak) for
our AR(1) likelihood, where both Σk and Ak are D-by-D matrices where D

is the dimension of each observation y
(i)
t . For the base measure B0, we have

a Matrix Normal - Inverse Wishart (MNIW) prior. It takes four parameters:
degrees-of-freedom n0, scale matrix S0 (defining covariance of Σk), scale
matrix K (which together with S0 defines the covariance of Ak), and finally
mean matrix M .

(B.9)
Σk | n0, S0 ∼ IW(n0, S0)

Ak | Σk,M,K ∼MN (Ak;M,Σk,K) ,

Executing the necessary calculus and algebra, we find the computation
reduces to a closed-form function of sufficient statistics:

imsart-aoas ver. 2012/04/10 file: Supplement.tex date: October 27, 2015



SUPPLEMENTARY INFO FOR THE BP-AR-HMM 7

p(Y k|Ỹ k) = p(Y k|M,K,S0, n0)

(B.10)

=

∫ ∫

p(Y k|Ak,Σk)p(Ak|M,Σk,K)p(Σk|n0, S0)dΣkdAk

=
1

(2π)
nkd

2

Γd(
nk+n0

2 )

Γd(
n0
2 )

|S0|
n0
2

|S
(k)
y|ȳ |

nk+n0
2

|K|
1
2

|S
(k)
ȳȳ |

1
2

(B.11)

where ΓD(·) is the D-dimensional gamma function, | · | denotes the de-
terminant, nk counts the number of observations in set Y k, and sufficient

statistics S
(k)
·,· are defined below

(B.12)

S
(k)
ỹỹ =

∑

(t,i)|z
(i)
t =k

ỹ
(i)
t ỹ

(i)T

t +K S
(k)
yỹ =

∑

(t,i)|z
(i)
t =k

y
(i)
t ỹ

(i)T

t +MK

S(k)
yy =

∑

(t,i)|z
(i)
t =k

y
(i)
t y

(i)T

t +MKMT S
(k)
y|ỹ = S(k)

yy − S
(k)
yỹ S

−(k)
ỹỹ S

(k)T

ỹỹ .

We emphasize that calculation of p(y|z) is straightforward even with al-
ternative generating distributions for the observed data (e.g. Gaussian or
Multinomial). So long as this distribution has the appropriate conjugate
prior, this quantity can be computed in closed-form as functions of suffi-
cient statistics.

B.2. Computing p(y(i)|fi, θ, η
(i)) marginalizing state sequence

z(i). Here, we discuss computation of the probability of a single sequence’s
observed data under a particular feature assignment:

p(y(i)|fi,θ,η
(i)) =

∑

z(i)

p(y(i), z(i)|fi,θ,η
(i))(B.13)

This is sometimes called the “marginal likelihood” of sequence i, though
we prefer the more descriptive term “likelihood marginalizing over discrete
state sequence.”

Achieving this calculation efficiently requires a variant of the sum-product
algorithm applied to the chain graph of the AR-HMM. Recall that given
a fixed feature assignment fi for each sequence in question, the BP-AR-
HMM reduces to a set of finite-dimensional AR-HMMs, each of which is

imsart-aoas ver. 2012/04/10 file: Supplement.tex date: October 27, 2015



8 E. FOX ET AL.

described by its set of feature-constrained transition distributions π(i) (a
deterministic normalization of η(i)) along with the shared library of VAR
parameters θk = {Ak,Σk}. The derivations below directly follow those for
the standard HMM (Rabiner, 1989). For simplicity we drop the superscript i

notation and use zt, yt instead of z
(i)
t , y

(i)
t as we assume a particular sequence

has be chosen.
First, we define a set of forward messages

αt(zt) , p(y1, . . . ,yt, zt),(B.14)

which satisfy the recursion

αt+1(zt+1) = p(yt+1 | zt+1, ỹt+1)
∑

zt

p(y1, . . . ,yt | zt)p(zt+1 | zt)p(zt)

(B.15)

= p(yt+1 | zt+1, ỹt+1)
∑

zt

αt(zt)p(zt+1 | zt)(B.16)

= N (yt+1;Azt+1 ỹt+1,Σzt+1)
∑

zt

αt(zt)πzt(zt+1).(B.17)

The messages are initialized as

α1(z1) = p(y1, ỹ1, z1) = N (y1;Az1 ỹ1,Σz1)π0(z1).(B.18)

After running the recursion from t = 1, . . . , T to obtain α2, . . . αT , the
desired likelihood is simply computed by summing over the components of
the forward message at time T :

p(y1, . . . ,yT |fi, θ, π
(i)) =

∑

zT

αT (zT ).(B.19)

Note that for the BP-HMM, at each step the forward message for time

series i is computed by summing z
(i)
t over the finite collection of possible

HMM state indices specified by that time series’s feature vector fi. That is,
whenever we have a

∑

zt
in the above equations, recall that the range of the

sum indicator is zt ∈ {k : fi,k = 1}.

Numerical stability. Frequently, for long sequences and high-dimensional
observations the above algorithm can result in numerical underflow. This
occurs because the joint probability p(y1, . . . yTi

) can be a very small num-
ber. To make the computation numerically stable for longer sequences, we
recommend implementing the revised recursion:
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 9

α̃t(zt+1) , p(yt+1, zt+1|y1, . . . ,yt) = p(yt+1|zt+1)
∑

zt

πztzt+1α̃t(zt)(B.20)

s̃t+1 , p(yt|y1, . . . ,yt−1) =
∑

zt+1

α̃t+1(zt+1)(B.21)

By defining each successive quantity as a distribution only over yt, zt
(instead of the full joint) we obtain improved numerical stability.

The dynamic programming algorithm is straightforward. First initialize:

α̃1(z1) = N (y1;Az1 ỹ1,Σz1)π0(z1)(B.22)

s̃1 =
∑

z1

α̃1(z1)(B.23)

α̃1(z1) =
1

s̃1
α̃1(z1)(B.24)

. Then iterate from t = 1, . . . T − 1 and do:

α̃t+1(zt+1) = N (yt+1;Azt+1 ỹt+1,Σzt+1)
∑

zt

αt(zt)πzt(zt+1).(B.25)

s̃t+1 =
∑

zt+1

α̃t+1(zt+1)(B.26)

α̃t+1(zt+1) =
1

s̃t+1
α̃t+1(zt+1)(B.27)

We then compute the logarithm of the likelihood of interest:

log p(y1, . . . ,yT |fi, θ, π
(i)) =

T
∑

t=1

log s̃t(B.28)

APPENDIX C: MCMC ALGORITHM FOR THE BP-AR-HMM

Here we give the formal details of the overall MCMC sampling algorithm
for the BP-AR-HMM advocated in our main paper.

The high-level algorithm is BP-AR-HMM-MCMC, listed in Alg. C.1. This algo-
rithm modifies every single member variable of the Markov state. Complet-
ing all the steps in this algorithm represent one “iteration” of our sampler.
This includes our novel birth-death moves modifying discrete variables as
well as our sequentially-allocated split-merge moves. Note that some moves
(such as our split-merge moves) may be attempted multiple times, since the
acceptance rates of these moves are typically low but the potential benefits
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10 E. FOX ET AL.

Algorithm C.1 BP-AR-HMM-MCMC( y,Ψ, α, c, γ, κ, λ)
Input:

y, ỹ: N sequences of observed data (current and lagged observations)
Ψt−1 = (F , z, θ, η, α, c, γ, κ) : input state of Markov chain (iter. t− 1)

F : N -by-K+ binary feature matrix
z : N discrete state sequences. Each z

(i)
t = k ∈ {1, 2, . . .K+} s.t. fik = 1

θ = θ1, . . . θk : Emission parameters (one set per feature k)
η = η(1) . . . η(N) : Transition weights (one set per sequence i)
α, c : BP hyperparameters
γ, κ : HMM transition hyperparameters

λ = (n0, S0,M,K) : MNIW prior hyperparameters
Output:

Ψt = (F , z, θ, η, α, c, γ, κ) : next state of Markov chain (iter. t)
Procedure:

1: for sequence i ∈ {1, 2, . . . N}:
2: for feature k ∈ {1, 2, . . .K+} owned by ≥ 1 other seq. (∃j 6= i s.t. fjk = 1):

3: m
(−i)
k ←

∑

i′ 6=i fi′k

4: fik ∼ SampleSharedFeature( y(i), fi, m
(−i)
k , θ, η(i), (α, c) ) (Alg. C.2)

5: z(i) ∼ SampleStateSequence( y(i), fi, θ, η ) (Alg. C.3)
6: fi, z

(i) ∼ SampleBirthDeath( y(i), fi, z, (α, c), (γ, κ), λ (Alg. D.1)
7: for trial r = 1,2, . . .R:
8: F , z ∼ SampleSplitMerge( y, F , z, (α, c), (γ, κ), λ)
9: for feature k ∈ {1, 2, . . .K+}:

10: θk ∼ SampleEmissionParams( {y(i)
t : z

(i)
t = k}, λ ) (Alg. C.4)

11: for sequence i ∈ {1, 2, . . . N}:
12: η(i) ∼ SampleTransitionWeights( z(i), (γ, κ) ) (Alg. C.5)
13: α, c ∼ SampleBPHypers( F , (α, c) ) (Alg. F.1)
14: γ, κ ∼ SampleHMMTransitionHypers( z, (γ, κ)) (Alg. F.2)
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 11

of an accepted move are very high due to the possible large changes in the
global discrete assignments.

We also specify the detailed sampling algorithms for some specific vari-
able updates in 5 here in this section. Note that the algorithms for birth-
death moves are in Supplement D and the split-merge algorithms are in
Supplement E. Furthermore, the hyperparameter sampling algorithms are
in Supplement F.

This leaves the following basic moves: sampling a single entry of the binary
feature matrix fik (Alg. C.2), block sampling the state sequence for one
time series z(i) (Alg. C.3), sampling emission parameters θ (Alg. C.4), and
sampling transition parameters η (Alg. C.5).

Sampling Shared Features. We sample each entry in F one-at-a-
time using Algorithm C.2, deciding whether each binary assignment is “on”
or “off.” Note that this algorithm is only valid for features that have at
least one other time series (excluding the current sequence) that possess it.
That is, we can only use this algorithm to modify entry fik if there exists a
sequence j 6= i such that fjk = 1. This requirement comes because the prior
on the binary assignment of a particular entry of F we use employs the IBP
predictive distribution for features that already exist. Entries that do not fit
this requirement are termed unique features and are sampled according to
the birth-death reversible jump procedures in D.

This algorithm proposes a new value f∗
ik = ¬fik, that is, the complement

of the existing binary assignment of feature k in fi. This proposal is either
accepted or rejected according to a Metropolis-Hastings procedure. To effi-
ciently determine the likelihood that feature k should be present or absent
in a given sequence (denoted by L in the algorithm), we marginalize over
all possible state sequences z, using the efficient dynamic programming pro-
cedure in B.2. This computation uses all features available to fi, including
or excluding k depending on the proposal. Thus, this computation requires
fixing the entire i-th row of F . The prior probability of possessing feature
k (denoted by P in the algorithm) is easily computed via the predictive
distribution defined in the IBP process, which requires on the number of

other sequences m
(−i)
k that possess feature k. Thus, this computation re-

quires fixing the entire k-th column of the matrix F . Because the proposal
distribution is deterministic, the acceptance ratio just involves the product
of P and L terms for both current and candidate assignments.

Sampling state sequence. For a particular time series, we sample
the entire hidden discrete state sequence z(i) all at once given sequence-
specific feature assignments fi, sequence-specific transition parameters η(i),
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12 E. FOX ET AL.

Algorithm C.2 SampleSharedFeature( y(i), ỹ(i),fi,m
(−i)
k , θ, η(i), α, c )

MH proposal that attempts to flip single entry in binary matrix to its complement
Input:

y(i), ỹ(i): observations and lagged observations for seq. i
fi : current binary feature vector for seq. i

m
(−i)
k : usage count of feature k in F , ignoring sequence i

Output:

f
(new)
ik : new binary assignment for feature k in seq. i

Procedure:

1: Obtain proposed binary assignment
f∗
i ← [fi1 fi2 . . . ¬fik

flip feat.k
. . . fiK+ ]

2: Compute probability of each feature configuration under IBP prior:
P ∗ ← f∗

ikpon + (1− f∗
ik)(1− pon)

P ← fikpon + (1− fik)(1− pon), pon ←
m

(−i)
k

N−m
(−i)
k

+c

3: Construct feature-constrained transition distributions:
π∗
k ∝ [η

(i)
k1 . . . η

(i)
kK+

]⊗ f∗
i , k ∈ {k : f∗

ik = 1}

πk ∝ [η
(i)
k1 . . . η

(i)
kK+

]⊗ fi, k ∈ {k : fik = 1}

4: Compute likelihoods of observed data under each assignment [Alg. B.27]
L∗ ← p(y(i)|ỹ(i),f∗

i , θ, π
∗)

L← p(y(i)|ỹ(i),fi, θ, π)
5: Compute acceptance ratio ρ = P∗L∗

PL

6: Sample new assignment: rand ∼ Unif(0, 1)

f
(new)
ik ←

{

f∗
ik if rand < min(ρ, 1)

fik otherwise

and global emission parameters θ. This block sampling procedure is some-
times termed “backward-filtering, forward sampling” due to the dynamic
programming algorithm employed (see Scott (2002) for details). Sampling
the sequence of Ti discrete labels all at once (as a block) yields much more
efficient mixing than iteratively sampling each entry individually.

The initial state distribution π
(i)
0 for time series imust be treated specially.

We choose to simply enforce a uniform distribution over all of theKi possible
features available in fi,

π
(i)
0k =

{

1
Ki

if fik = 1

0 o.w.
(C.1)

Alternatives are certainly possible. We choose this uniform distribution be-
cause there is little we can learn about the initial state distribution from
data. Because we use a sequence-specific transition model, for each sequence

there is only one observed data point, z
(i)
1 , that influences this distribution’s
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 13

posterior. By enforcing the uniform distribution we simplify inference (since
we need not sample this value) and lose little in model expressiveness.

Algorithm C.3 SampleStateSequence( y(i), ỹ(i), fi, θ, η
(i))

Block sample discrete state assignments to each timestep in seq. i
Input:

y(i), ỹ(i): observations and lagged observations for seq. i
fi : current binary feature vector for seq. i
θ = (θ1, . . . θK+) : emission parameters (one set per feature)

θk = (Ak,Σk) : VAR likelihood parameterized by coefs Ak and covariance Σk

Output:

z(i) : sample of i’s discrete state sequence drawn from conditional posterior
Procedure:

1: Precompute soft evidence
for t ∈ {1, 2, . . . Ti}:

ℓtk , p(y
(i)
t |z

(i)
t = k) = N (y

(i)
t | Akỹ

(i)
t , Σk) k ∈ {k : fik = 1}

2: Create feature constrained transition weights
πk· ∝ [ η

(i)
k1 . . . η

(i)
kK+

]⊙ fi, k ∈ {k : fik = 1}
3: Initialize M : Ti-by-Ki table for dynamic programming

MTi,k ← 1, Mt,k , p(y
(i)
t+1:Ti

|z(i)t = k, ỹ
(i)
t , π, θ)

4: Backward pass of dynamic programming.
for t ∈ {Ti − 1, . . . 1}:

for k ∈ {k : fik = 1}:
Mt,k ←

∑

k′:fik′=1 [πk(k
′) · ℓt+1,k′ ·Mt+1,k′ ]

5: Forward sample discrete state sequence (initialize in special start state z
(i)
0 = 0):

for t ∈ {1, 2, . . . Ti}:
~pk ← π

z
(i)
t−1,k

· ℓt,k ·Mt,k for k ∈ {k : fik = 1}

~p← ~p/
∑

k ~pk normalize

z
(i)
t ∼ Cat(~p)

Sampling emission parameters θk. Given the feature assignments
F , the observed data y, and the feature assignments for each timestep of
data encoded in z, each individual feature k has a conditionally independent
posterior over its emission parameters θk = (Ak,Σk).

Because our emission distribution (auto-regressive Gaussian) lies in the
exponential family and has a conjugate posterior given our MNIW prior,
this posterior is found simply by aggregating data from any timestep in any
sequence assigned to feature k. We denote this collection of data assigned to

k as Y k = {y
(i)
t : z

(i)
k }. We then compute sufficient statistics on the set Y k,

and using these sufficient statistics to build the parameters of the MNIW
posterior distribution over Ak,Σk. See Alg. C.4 for details.
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Algorithm C.4 SampleEmissionParams( Y k, Ỹ k, λ)
Gibbs sampling algorithm for HMM emission parameter set θk for specific feature k
Input:

Y k = {y(i)
t : z

(i)
t = k} : set of all observed data from any seq. assigned to feature k

Ỹ k = {ỹ(i)
t : z

(i)
t = k} : set of all lagged observations from any seq. assigned to k

λ = (n0, S0,M,K) : MNIW prior hyperparameters
Output:

θk = (Ak,Σk) : VAR likelihood parameters drawn from conditional posterior
Procedure:

1: Compute sufficient statistics S
(k)
· according to Eq. B.12.

2: Compute parameters of MNIW posterior distribution
degrees of freedom nk ← n0 + |Y k|

scale matrix Sk ← S
(k)

y|ỹ

mean matrix Mk ← S
(k)
yỹ [S

(k)
ỹỹ ]−1

coef. scale matrix Kk ← S
(k)
ỹỹ

3: Sample new emission parameters θk = (Ak,Σk)

Σk ∼ IW (nk, Sk)

Ak | Σk ∼MN (Mk,Σk,Kk)

Sampling transition parameters η(i). Given the feature matrix F

and state sequences z, our BP-HMM model yields posterior distributions for
the transition parameters η such that each sequence’s specific parameters
η(i) are conditionally independent. We give the algorithm η(i) in Alg. C.5.

To understand this algorithm, it helps to review the generative process
for the state sequence z(i). Note that we assume a uniform initial state
distribution, but this detail is not crucial to this algorithm.

η
(i)
jk ∼ Gamma(γ + δjkκ, 1)(C.2)

π
(i)
jk ←

{

η
(i)
jk /Cj if fij = 1 and fik = 1

0 o.w.
, Cj ←

∑

k′:fik′=1

η
(i)
jk′

z
(i)
1 ∼ Unif({k : fik = 1})

z
(i)
t ∼ Cat(π

(i)

z
(i)
t−1

), for t = 2, 3, . . . Ti

Equivalently, we can define explicitly the generative probability for the tran-

sition distribution π
(i)
j out of state j as

π
(i)
j ∼ Dir([γ, γ, . . . γ + κ

δjk

, . . . γ]⊙ fi)(C.3)
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 15

Because features not present in fi have zero probability of occurring in z(i),
we only need to sample the entries of η(i) that corresponding to features k
satisfying fik = 1. Given the set of “on” features for sequence i, the posterior
of interest factors nicely so that each set of weights for transitioning “out-
of” a particular feature k are conditionally independent. That is, we may

simply iterate over the set of features {k : fik = 1}, and sample each set η
(i)
k·

indepedently.
For features k′ not possessed in fi, we need not maintain the associated

entries of η(i) at all. This includes either the whole set of out-going weights-

from k′: η
(i)
k′ , or the weights for incoming transitions to k′ from some other

feature j: η
(i)
jk′ . Avoiding maintaining these entries can save memory in imple-

mentation. When adding some feature k′ to a sequence (e.g. when proposing
to flip entry fik′ from “off” to “on” via Alg. C.2), we can simply draw the
necessary entries of η(i) from the prior. For each feature j ∈ {j : fij = 1},
we have

η
(i)
jk′ ∼ Gamma(γ + δjk′κ, 1), η

(i)
k′j ∼ Gamma(γ + δk′jκ, 1)(C.4)

As described in the main text, the sampling procedure for the set of
weights for transitioning “out-of” some state j is accomplished via an auxil-
iary variable method. Usually, sampling a set of Dirichlet random variables is
done by drawing a set of independent Gamma random variables and normal-
izing them so the resulting set of numbers sums to one. Instead, here we need

to sample from the posterior of random variables η
(i)
j with a Gamma prior

and a normalized-Gamma likelihood. We can accomplish this by drawing
the normalized transition distribution πj for the sequence, and then unnor-
malizing via multiplication by a scale factor Cj . This scale factor represents
the total sum of the unconstrained weights in question.

APPENDIX D: MCMC BIRTH-DEATH PROPOSALS

Here, we provide details about our birth-death MCMC proposal that adds
or deletes a single feature to one particular sequence. We first discuss our
novel approach that directly proposes changes to discrete assignment vari-
ables fi, z

(i). Later, we consider older methods that instead propose contin-
uous parameters fi, θ, η

(i).

D.1. BP-HMM birth-death with discrete parameters. Our novel
birth-death sampler directly proposes modifications to all the latent discrete
assignments associated with the current sequence. This proposal move mod-
ifies two quantities: (1) add or delete a single entry in binary feature assign-
ment vector fi, and (2) sample fresh values of the state sequence z(i) using
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16 E. FOX ET AL.

Algorithm C.5 SampleTransitionWeights( fi, z
(i), γ, κ )

Gibbs sampler for HMM transition weight set η(i) for available features of seq. i
Input:

z(i) = [ z
(i)
1 , z

(i)
2 , . . . z

(i)
Ti

] : state trajectory for seq. i, z
(i)
t ∈ {k : fik = 1}

γ : transition hyperparameter (pseudocounts for each possible transition)
κ : self-transition bias hyperparameter

Output:

η(i) : set of transition weights drawn from conditional posterior
Procedure:

1: Compute sufficient statistics above Markovian transitions in z(i)

Nkk′ =

Ti
∑

t=2

δ
z
(i)
t−1,k

δ
z
(i)
t ,k′

for k, k′ ∈ {k : fik = 1}

2: for each feature k ∈ {k : fik = 1}:
Sample constrained transition distribution for each feature:

πk,· ∼ Dir( [ . . . Nkk′ + γ + δk,k′κ . . . ]⊙ fi )

Sample scale factor

Ck ∼ Gamma(Kiγ + κ)

Apply scale factor to distribution to create unconstrained transition weight
η
(i)

k,k′ ← Ck · πkk′

only the features available in the newly modified fi. Each proposed configu-
ration f∗

i , z
∗(i) is jointly accepted or rejected in a single Metropolis-Hastings

step.
The overall procedure is formalized in Alg. D.1. Given the i-th sequence

to modify and the current sampler configuration, we first identify the set of
unique features Ui possessed in fi. If the size of this set |Ui| is zero, we must
always choose a birth move. However, if some existing features are unique,
we either choose a birth with probability 1/2, or otherwise choose to delete
a member of Ui uniformly at random.

Regardless of what move we select, we must choose randomly a window W
of the current time series in advance. This window enables our data-driven
proposals. We constrainW to have some predefined minimum and maximum
length (in applications these can be chosen to suggest appropriate time scales
for the duration of a single behavior). We choose the length for the current
window uniformly within the given bounds, and given the length L choose
the start positionof the window uniformly within all possible positions in the
time series T0 ∈ {1, 2, . . . Ti−L+1}. This selection process is done without
any knowledge of the sampler configuration to maintain a valid transition
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SUPPLEMENTARY INFO FOR THE BP-AR-HMM 17

kernel.
Given this windowW and the chosen move type, we proceed to construct

the proposed new configuration f∗
i , z

∗(i). This involves the proposal algo-
rithms outlined in Alg. D.2 (for birth moves) and in Alg. D.3 (for death
moves). Both moves rely on deterministic HMM parameters θ̂, η̂ to perform
block sampling of the candidate state sequence. These are obtained deter-
ministically given the data and the input configuration z, as formalized in
Alg. D.4. In addition to sampling the new candidate configuration, both
these proposal algorithms also compute the necessary forward and reverse
probabilities required in the acceptance ratio.

Consider the example of a birth move. To maintain reversibility, we need
to consider both the forward move (birth proposal of the candidate configu-
ration with one extra feature), and the reverse move (death proposal of the
newborn feature that returns to the exact old configuration). The forward
probability consists of (1) the birth move to create f∗

i , denoted qf−fwd(), and
(2) sampling the particular chosen z∗(i) given the previous assignments z(i),
denoted qz−fwd(). The reverse probability similarly has two terms, one for
deciding to delete the feature in question qf−rev(), and the other for landing
back at the exact original state sequence qz−rev().

The details of computing this reverse probability are a bit tricky. Essen-
tially, instead of actually sampling a state sequence from the reverse move
proposal algorithm (in our running example, a death move), we wish to just
compute the probability of arriving back at some target state sequence z(i)

known in advance. To do so, we compute the necessary HMM parameters
and walk through that sampling process of our block sampler (Alg. C.3) step-
by-step. At each point where the algorithm requires sampling, we instead
force the algorithm to choose the target value and record the probability of
doing so via the current conditional posterior. This of course conditions on
the past decisions we’ve made to force the sampler to propose the target
value.

Given these forward and reverse move probabilities as well as the joint
probability of the new and current configurations, we accept a birth move
with probability min(1, ρ), where

ρbirth in seq. i =
p(y, z∗,f∗

i )

p(y, z,f i)

qz−rev(z
(i)|fi, z

∗,y)

qz−fwd(z∗(i)|f∗
i , z,y)

qf-rev(f i|f
∗
i )

qf-fwd(f
∗
i |f i)

(D.1)

Note that for simplicity we ignore the dependence on the lagged observa-
tions ỹ here.
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18 E. FOX ET AL.

Algorithm D.1 SampleBirthDeath(i,y, ỹ,F , z )

Data-driven MH proposal that attempts to add/remove feature from seq. i
Input:

i : integer id of the sequence whose assignments we’ll modify
y, ỹ : observations and lagged observations for all sequences
F = {fi}

N
i=1 : binary feature assignments for all items

z : state sequences for all items
Output:

fnew
i , z(i)new : new assignments for item (sequence) i

Subprocedures:

pbirth(Ui) : function that determines the probability of performing a birth move given
the current configuration’s set of unique feature ids Ui

we set pbirth(Ui) =

{

1
2

if |Ui| > 0

1 otherwise
, though other possibilities exist

Procedure:

1: Identify set Ui of features unique to sequence i in F

2: Select random contiguous window W = {T0, T0 + 1, . . . T0 + L− 1} of length L

L ∼ Unif(Lmin, Lmax), T0|L ∼ Unif({1, 2, . . . Ti − L+ 1})

3: Choose either birth or death move
movetype ∼ Bern( pbirth(Ui) )

4: Propose new assignments using chosen move
keep track of forward and reverse transition probs Q

if movetype = 1: birth move
f∗
i , z

∗(i), Qf−fwd, Qz−fwd, Qf−rev, Qf−rev ← BirthProposal( i,fi,Ui,y, ỹ, z,W )
else: death move

f∗
i , z

∗(i), Qf−fwd, Qz−fwd, Qf−rev, Qf−rev ← DeathProposal( i,fi,Ui,y, ỹ, z,W )
5: Compute joint probability of current and proposed configurations (Eq. B.2 )

L∗ ← p(y, ỹ,F ∗, z∗)

L← p(y, ỹ,F , z)

6: Decide whether to accept or reject candidate state

ρ =
L∗

L

Qz−revQf−rev

Qz−fwdQf−fwd
, D ∼ Bern (min(ρ, 1)) , f

new
i , z(i)new =

{

f∗
i , z

∗(i) if D = 1

fi, z o.w.
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Algorithm D.2 BirthProposal( i, fi,Ui,y, ỹ, z,W )

1: Add new feature at k∗ = K+ + 1
f∗
i ← [fi1 fi2 . . . fiK+ 1]
U∗
i ← Ui + {k

∗}
Qf−fwd ← pbirth(Ui)

2: Obtain HMM parameters, using modified state sequence z̄

z̄
(i)
t ←

{

k∗ if t ∈ W

z
(i)
t otherwise

θ̂∗, η̂∗(i) ← DeterministicHMMParams( i,y, ỹ,f∗
i , z̄ )

3: Sample proposed new state sequence
z∗(i), Qz−fwd ∼ SampleStateSequence(y(i), ỹ(i),f∗

i , θ̂
∗, η̂∗(i) )

4: Consider reverse move (death at feature k∗ = K+ + 1)
f̄i ← [fi1 . . . fiK+0]

Qf−rev ←
1−pbirth(U

∗

i )

|U∗

i
|

θ̂, η̂(i) ← DeterministicHMMParams( i,y, ỹ, f̄i, z
∗ )

Qz−rev ← SampleStateSequence(y(i), ỹ(i), f̄i, θ̂, η̂
(i), target=z )

Algorithm D.3 DeathProposal( i, fi,Ui,y, ỹ, z,W )
1: Choose specific unique feature to delete

k∗ ∼ Unif( Ui )
f∗
i ← [fi1 fi2 . . . 0 . . . fiK+ ]
U∗
i = Ui − {k

∗}

Qf−fwd ←
1−pbirth(Ui)

|Ui|

2: Obtain HMM parameters
θ̂∗, η̂∗(i) ← DeterministicHMMParams( i,y,f∗

i , z )
3: Sample proposed state sequence

z∗(i), Qz−fwd ∼ SampleStateSequence(y(i), ỹ(i),f∗
i , θ̂

∗, η̂∗(i) )
4: Consider reverse move (birth)

f̄i ← [fi1 fi2 . . . 1 . . . fiK+ ]
Qf−rev ← pbirth(U

∗
i )

Obtain HMM parameters, using modified state sequence

z̄
(i)
t ←

{

k∗ if t ∈ W

z
∗(i)
t o.w.

θ̂, η̂(i) ← DeterministicHMMParams( i,y, f̄i, z̄ )
Determine probability of returning to original state seq.

Qz−rev ← SampleStateSequence(y(i), ỹ(i), f̄i, θ̂, η̂
(i), target=z )
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Algorithm D.4 DeterministicHMMParams( i,y, ỹ,fi, z )

Get transition weights η̂(i) and emission params θ̂ for all features active in fi

1: Construct transition weights using prior mean
for k ∈ {k : fik = 1}:

for k′ ∈ {k : fik = 1}:

η̂
(i)

kk′ ← γ + δkk′κ , E[Gamma(η
(i)

kk′ |γ + δkk′κ, 1)]
2: Obtain sufficient statistics and compute parameters of MNIW posterior distribution

for k ∈ {k : fik = 1}:

S
(k)
·· ← via Eq. (B.12) using data Y k = {y(i′)

t : z
(i′)
t = k} from any seq. i′

degrees of freedom nk ← n0 + |Y k|

scale matrix Sk ← S
(k)

y|ỹ

mean matrix Mk ← S
(k)
yỹ [S

(k)
ỹỹ ]−1

coef. scale matrix Kk ← S
(k)
ỹỹ

3: Construct emission parameters using posterior mean
for k ∈ {k : fik = 1}:

Σ̂k ←
Sk

nk−D−1
, E[IW(Σk|nk, Sk, Y k, Ỹ k)]

Âk ←Mk , E[MN (Ak|Mk,Σk,Kk, Y k, Ỹ k)]
θ̂k ← (Âk, Σ̂k)

D.2. Review of related work. In contrast to our new approach using
a birth-death sampler in discrete assignments, previous work on the BP-
AR-HMM as well as other beta process models used a variety of methods
to make inferences about the number of features available. This includes
truncation, proposals that modify all unique features for a sequence at once,
and proposals similar to our birth-death approach that add or delete one
unique feature at a time.

Let K+ = K−i
+ + ni, where ni is the number of unique features chosen,

and define f−i = fi,1:K−i
+

and f+i = fi,K−i
+ +1:K+

. The posterior distribution

over ni is then given by

(D.2) p(ni | fi,y
(i)
1:Ti

,η(i), θ1:K−i
+
, α) ∝

( α
N )nie−

α
N

ni!
∫∫

p(y
(i)
1:Ti
| f−i,f+i = 1,η(i),η+, θ1:K−i

+
,θ+) dB0(θ+)dH(η+),

where H is the gamma prior on transition variables η
(i)
jk , and B0 is the

base measure of the beta process. The set θ+ = θK−i
+ +1:K+

consists of the

parameters of unique features, and η+ the transition parameters η
(i)
jk to or

from unique features j, k ∈ {K−i
+ +1 : K+}. Exact evaluation of this integral

is intractable due to dependencies induced by the AR-HMMs.
One approach to this non-conjugacy relies on a truncation of the limiting

Bernoulli process (Görür et al., 2006). That is, drawing ni ∼ Poisson(α/N)
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is equivalent to setting ni equal to the number of successes in infinitely many
Bernoulli trials, each with probability of success: limK→∞

α/K
α/K+N .

Görür et al. (2006) truncate this process, using K∗ Bernoulli trials with

probability α/K∗

α/K∗+N . Meeds et al. (2006) instead consider Metropolis propos-

als which replace the existing unique features by ni ∼ Poisson(α/N) new
features, with parameters θ+ drawn from the prior. For high-dimensional
data, however, such moves have very low acceptance rates.

D.3. BP-HMM birth-death with continuous parameters. Moti-
vated by the inadequacy of the related work, in past conference publications
we developed a reversible jump MCMC sampler (Green, 1995), which pro-
poses to either add one new feature (“birth”), or eliminate one existing
feature in f+i (“death”) and also proposes the necessary sets of continuous
HMM parameters θ, η, marginalizing away the state sequences z(i).

We stress that our novel moves in the discrete assignment space appear in
practice much better due to the avoidance of the curse of dimensionality that
plagues any proposal of these continuous parameters. Our original work on
the BP-HMM originally generated candidate emission parameters from the
prior (Fox et al., 2009) and later we suggested an improved data-driven pro-
posal distribution (Hughes et al., 2012). For completeness we briefly discuss
both possible proposals below. Importantly, note that our data-driven pro-
posal for emission parameters used a window selection process very similar
in spirit to our current birth-death sampler.

We now outline the basic flavor of our continuous HMM parameter pro-
posals. The sampler move takes as input a current configuration of unique
feature assignments f+i, emission parameters for unique features θ+, and
transition weights for unique features for sequence i: η+. We propose a new
configuration f ′

+i, θ
′
+, η

′
+. The proposal distribution factors as follows

q(f ′
+i,θ

′
+,η

′
+ | f+i,θ+,η+) =qf (f

′
+i | f+i)× qθ(θ

′
+ | f

′
+i,f+i,θ+)(D.3)

× qη(η
′
+ | f

′
+i,f+i,η+)

The feature proposal qf (· | ·) encodes the probabilities of birth and death
moves; we propose a birth with probability 0.5, and delete each of the ni

existing features with probability 0.5/ni. After an accepted move, we have
n′
i = ni+1 features (birth), or n′

i = ni−1 (death). If the proposal is rejected,
we maintain the original n′

i = ni unique features.

D.3.1. Prior proposal for emission parameters. In original work (Fox
et al., 2009), we define our emission parameter proposal qθ(θ

′
+ | f

′
+i,f+i,θ+)
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equal to:

{

b0(θ
′
+,ni+1)

∏ni

k=1 δθ+,k
(θ′+,k), birth of feature ni + 1;

∏

k 6=ℓ δθ+,k
(θ′+,k), death of feature ℓ.

(D.4)

Under a birth proposal, a new parameter θ′+,ni+1 is drawn from the prior
and all other parameters remain the same. For a death proposal of feature j,
we simply eliminate that parameter from the model. Here, b0 is the density
associated with emission distribution prior: α−1B0.

The distribution qη(· | ·) is defined similarly. Under a birth, new parame-
ters for transitions into the new state η′+,·,ni+1 and away from it η+,ni+1,· are
drawn using the gamma prior on transition weights: Gamma(α+ κδk,k′ , 1).
Under a death move, we simply delete all parameters related to the state
being deleted.

The Metropolis-Hastings acceptance probability is then given by

(D.5) ρ(f ′
+i,θ

′
+,η

′
+ | f+i,θ+,η+) = min{r(f ′

+i,θ
′
+,η

′
+ | f+i,θ+,η+), 1}.

We compactly represent the acceptance ratio r(· | ·) for either a birth or
death move as

(D.6)
p(y

(i)
1:Ti
| [f−i f

′
+i],θ

′,η(i),η′
+) Poi(n

′
i | α/N) qf (f+i | f

′
+i)

p(y
(i)
1:Ti
| [f−i f+i],θ,η

(i)) Poi(ni | α/N) qf (f
′
+i | f+i)

,

where we recall that n′
i =

∑

kf
′
+ik. Because our birth and death proposals

do not modify the values of existing parameters, the Jacobian term normally
arising in reversible jump MCMC algorithms simply equals one.The proposal
terms qη and qθ exactly cancel with the terms related to the joint probability
p(θ), p(η), so these need not appear in the simplified form of the acceptance
ratio.

D.3.2. Data-driven proposal for emission parameters. Efficiently adding
or deleting features is crucial for good mixing. In moderate- to high-dimensional
applications, such as our motion capture, we observe that the birth move
outlined above can have low acceptance rates for birth proposals. Because
the emission parameters θk∗ for the new feature are drawn from a potentially
vague prior b0, they are unlikely to yield appreciable gains in the likelihood

p(y
(i)
1:Ti
| θ′, . . .) due to the inevitable mismatch between the prior and the

empirical distribution. That is, it is unlikely for a randomly sampled parame-
ter to better explain the data than the currently instantiated, data-informed
parameters.

imsart-aoas ver. 2012/04/10 file: Supplement.tex date: October 27, 2015



SUPPLEMENTARY INFO FOR THE BP-AR-HMM 23

To ameliorate these issues, we suggest a data-driven reversible jump pro-
posal (Tu and Zhu, 2002; Hughes and Sudderth, 2012), which improves on
the prior by combining it with the posterior of θk∗ given data in a randomly
chosen subwindow W of the current sequence. This proposal was thoroughly
advocated in (Hughes et al., 2012). We draw θk∗ from a proposal distribu-
tion which is a mixture of this posterior and the prior over θ (denoted pθ(·)).
Formally, the resulting proposal distribution is

qθ(θ) =
1

2
pθ(θ) +

1

2
p(θ | {y

(i)
t : t ∈W})(D.7)

This mixture strikes a balance between successfully creating new features
while also making death moves possible. We found experimentally that using
only the posterior over the subwindow W as a proposal distribution had low
acceptance of death moves due to the sharply-peaked reverse probability.

Under this data-driven proposal, the acceptance ratio rbirth for a birth
move to a candidate state which adds feature k∗ then becomes
(D.8)

p(y
(i)
1:Ti
| [f−i f

′
+i],θ, θk∗ ,η

(i),η′
+) Poi(n

′
i | α/N) qf (f+i | f

′
+i)pθ(θk∗)

p(y
(i)
1:Ti
| [f−i f+i],θ,η

(i)) Poi(ni | α/N) qf (f
′
+i | f+i)qθ(θk∗)

,

The above is similar to Eq. (D.6), but includes terms to account for the
data-driven proposal of θk∗ . As outlined above, the Jacobian remains unity
since no existing parameters are modified. The acceptance ratio for a death
move under the data-driven framework is the reciprocol of Eq. (D.8).

Note that no term in the acceptance ratio accounts for the choice of the
subwindow W . We can omit such a term because when updating the unique
features of a particular object i, W is chosen uniformly at random from all
possible windows in time series i 1. This choice is independent of the choice to
perform birth or death moves, and its probability does not depend on current
model parameters. Thus, each particular random choice of subwindow W
defines a valid pair of birth-death moves satisfying detailed balance, and we
need not include such a choice in an acceptance ratio (Tierney, 1994).

APPENDIX E: MCMC SPLIT-MERGE PROPOSALS

Here, we provide additional algorithmic details on the process of our novel
split-merge moves. To review, our SM moves operate on the Markov state
Ψ = (F , z) of the BP-HMM MCMC chain, where F denotes the binary

1We recommend enforcing duration requirement Lmin ≤ |W | ≤ Lmax when selecting
W , where L are user-specified parameters. This does not alter validity, but allows biasing
the window to leverage sufficient data to achieve higher acceptance rates.

imsart-aoas ver. 2012/04/10 file: Supplement.tex date: October 27, 2015



24 E. FOX ET AL.

feature assignment matrix and z = {z(1) . . . z(N)} denotes the HMM state
sequences for each time series in the collection. We will use fi or f (i) to
denote the i-th row of F .

First, we provide a high-level overview of a split-merge move in Alg. E.1.
Next, we give details on the construction of a merge proposal in Alg. E.3,
complementing the algorithm provided in the main paper (Alg. 1) for a split

proposal. Finally, we provide a restricted Gibbs (RG) sampling algorithm (
Alg. E.4 ) for drawing individual feature assignments ka, kb for one sequence
within the sequentially allocated split proposal. This includes important de-
tails about how the transition probability is calculated for the acceptance
ratio. Our hope is that this information might provide a knowledgable prac-
tioner sufficient details to fully understand and reproduce our split-merge
MCMC moves.

Overall Split-Merge Procedure. As outlined in the main paper,
completing one SM update requires several steps: selecting anchor items,
selecting features to determine the appropriate move (split or merge), con-
structing the proposed assignment variables F ∗, z∗ under the chosen move,
and finally accepting or rejecting via Metropolis-Hastings. This high-level
procedure is specified in Alg. E.1.

In general, the proposal move (whether a split or a merge) involves se-
lecting a pair of features to modify ki, kj and then sampling a candidate
configuration F ∗, z∗. To maintain detailed balance, in the acceptance ratio
we consider reversing this move: selecting features to modify k∗i , k

∗
j from the

new configuration Ψ∗ = (F ∗, z∗) that will allow returning to the original
configuration Ψ = (F , z). The generic formula for computing the accep-
tance ratio of a split-merge move, agnostic to whether a split or a merge is
actually proposed, is then

ρ =
p(y, ỹ,Ψ∗)

p(y, ỹ,Ψ)

q(Ψ|Ψ∗, i, j, k∗i , k
∗
j )

q(Ψ∗|Ψ, i, j, ki, kj)

qk(k
∗
i , k

∗
j |Ψ

∗, i, j)

qk(ki, kj |Ψ, i, j)
(E.2)

Note that for simplicity, in our notation above (and in the algorithm) we
have omitted the dependence on data y, ỹ in proposal distributions q(),
though both the choice of features ki, kj and the proposal of Ψ∗ do in fact
depend crucially on this data.

To fill in details explicitly, the accept ratio for a split move that creates
new features ka, kb from single feature km = ki = kj is:

ρsplit|i, j =
p(y, ỹ,Ψ∗)

p(y, ỹ,Ψ)

qmerge(Ψ|Ψ
∗, i, j, ka, kb)

qsplit(Ψ∗|Ψ, i, j, km, km)

qk(ka, kb|Ψ
∗, i, j)

qk(km, km|Ψ, i, j)
(E.3)
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Algorithm E.1 SampleSplitMerge( y, ỹ,F , z, (α, c), (γ, κ), λ)
Input:

y, ỹ : observations and lagged observations for all time series
Ψ = (F, z) : current state of Markov chain discrete variables
α, c : BP hyperparameters
γ, κ : HMM transition hyperparameters

Output:

Ψnew = (F new, znew) : new state of Markov chain discrete variables
Procedure:

1: Select anchor items i, j uniformly at random from all data items
2: Select a feature from each anchor item to modify

ki, kj , qk−fwd ← FeatureSelect(y, ỹ,Ψ∗, i, j, target feats. = (ka, kb))
3: if ki = kj
4: Ψ∗, qfwd ← SplitProposal( Ψ, y, ỹ, i, j, orig. = ki, new = (ka, kb) )
5: qk−rev ← FeatureSelect( y, ỹ,Ψ∗, i, j, target feats. = (ka, kb))
6: qrev ← MergeProposal( Ψ∗, y, ỹ, i, j, orig. = (ka, kb), new = ki, target = Ψ )
7: else:
8: Ψ∗, qfwd ← MergeProposal( Ψ, y, ỹ, i, j, ki, kj , km )
9: qk−rev ← FeatureSelect( y, ỹ,Ψ∗, i, j, target feats. = (km, km))
10: qrev ← SplitProposal( Ψ∗, y, ỹ, i, j, orig. = km, new = (ki, kj), target = Ψ )
11: Calc. joint log prob of current and proposed states via Eq. B.2

L∗ ← p(y, ỹ,Ψ∗), L← p(y, ỹ,Ψ)
12: Compute acceptance ratio ρ

ρ←
L∗

L

qrev
qfwd

qk−rev

qk−fwd
,

p(y, ỹ,Ψ∗)

p(y, ỹ,Ψ)

q(Ψ|Ψ∗, i, j, k∗
i , k

∗
j )

q(Ψ∗|Ψ, i, j, ki, kj)

qk(k
∗
i , k

∗
j |Ψ

∗, i, j)

qk(ki, kj |Ψ, i, j)
(E.1)

13: Decide whether to accept or reject

Ψnew ←

{

Ψ∗ with prob. min(ρ, 1),

Ψ otherwise

Similarly, the ratio for a merge move that combines features ka, kb into a
single new feature km

ρmerge|i, j =
p(y, ỹ,Ψ∗)

p(y, ỹ,Ψ)

qsplit(Ψ|Ψ
∗, i, j, km, km)

qmerge(Ψ∗|Ψ, i, j, ka, kb)

qk(km, km|Ψ
∗, i, j)

qk(ka, kb|Ψ, i, j)
(E.4)

Next, we focus on the proposal construction procedures, which we call
MergeProposal and SplitProposal in Alg. E.1. Note that the algorithm in
the main paper specifies SplitProposal. Here, we provide the complemen-
tary sequential allocation procedure used to create a merge proposal.

E.1. Feature Selection Distribution. A crucial step in the split-
merge framework for our latent feature model is the selection of which fea-
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tures to modify, which directly determines whether we split or merge. The
formal process of feature selection is outlined in Alg. E.2.

As described in the main text (Section 6), this procedure takes in the
current sampler configuration and two anchor sequences, and samples two
feature labels ki, kj such that fiki = 1 and fjkj = 1. Naively sampling ki, kj
uniformly at random will frequently result in merges that do not make sense,
so we first select ki at random, and then bias the selection of kj so that
features that explain similar data as ki will be more likely to be selected.
This is done via a marginal likelihood ratio, which indicates how much the
emission model prefers to explain the data attached to ki, kj together versus
separately. Additionally, when possible (i.e. when fjki = 1) we encourage
the selection of kj = ki (which results in a split move proposal) by enforcing
that this choice has probability 2/3). This requires careful bookkeeping but
is perfectly valid.

E.2. Merge Proposal using Sequential Allocation . Constructing
a merge proposal, which combines input features ka, kb into a new feature
km, follows a sequential allocation process, similar to the SplitProposal

outlined in the main paper (Alg. 1). Here, given fixed choice of ka, kb the
proposed feature assignments are deterministic: we set f∗

ℓ,km
= 1 if ℓ is in

the active set S, and f∗
ℓ,km

= 0 otherwise. However, we still completely
update the state sequences of the active set. Alg. E.3 specifies the necessary
steps. Note that sequential allocation is used here to iteratively improve the
emission parameters used for the new “merged” feature km.

E.3. Sampling Feature Assignments for Split Proposal. During a
split proposal (outlined in Alg. 1), we visit each sequence ℓ within the active

set and choose its binary assignments f
(ℓ)
ka,kb

to the new features ka, kb. The

algorithm for updating f
(ℓ)
ka,kb

is given in Alg. E.4.
SampleSplitFeatures is a restricted Gibbs (RG) algorithm that is suc-

cessively applied to each individual sequence. We sweep through the active
set S and for each item ℓ we sample only assignments to new features ka, kb
based on the assignments made to previously visited sequences. We call this
set of previously visited items Sprev, which is a subset of S. The possible bi-
nary assignments made are restricted : we must enforce that each item ℓ ∈ S
possesses at least one of the new features.

Two things are important to highlight about this process. First, we must
track the proposal probabilities qf of making each random choice. These are
used in the acceptance ratio of Alg. E.1. Performing this bookkeeping using
logarithms allows more numerically stable computations. Second, we must
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Algorithm E.2 FeatureSelect( y, ỹ,F , z, i, j)
Input:

y, ỹ : observations and lagged observations
F , z : current discrete assignments for feature possession and state sequences.
i, j : anchor sequence ids

Optional Input:

ktarget
i , ktarget

j : specific feature ids to choose.
If provided, just compute probability qk of choosing these features.

Output:

ki : feature possessed by i to modify. Must satisfy fiki
= 1.

kj : feature possessed by j to modify. Must satisfy fjkj
= 1.

qk , qk(ki, kj |y, ỹ,F , z, i, j) : probability of choosing ki, kj via this procedure
Procedure:

1: Select ki uniformly from all features possessed by i:
ki ∼ Unif( {k : fik = 1} ), qki

= 1
|{k:fik=1}|

2: For each candidate feature id for kj , give it a selection probability pk
High probability for features more similar to ki
for k ∈ {k : fjk = 1}:

pk ← m(Yk ∪ Yki
)/ [m(Yk) ·m(Yki

)]

where Yk , {y(ℓ)
t : z

(ℓ)
t = k}, Ỹk , {ỹ(ℓ)

t : z
(ℓ)
t = k},

and the marginal likelihood (Eq. B.11) is

m(Yk) , p(Yk|Ỹk,M,K, S0, n0)

=

∫ ∫

p(Yk|Ỹk,Ak,Σk)p(Ak|M,Σk,K)p(Σk|n0, S0)dΣkdAk

=
1

(2π)
nkd

2

Γd(
nk+n0

2
)

Γd(
n0
2
)

|S0|
n0
2

|S(k)

y|ȳ |
nk+n0

2

|K|
1
2

|S(k)
ȳȳ |

1
2

,

3: Compute prob. of choosing a feature distinct from ki (leads to a merge move)

Cj =
∑

k:fjk=1

I[k 6= ki]pk, I is the indicator function

4: If a split move (selecting ki = kj) is possible, make this move have 2/3 probability
if fjki

= 1: pki
= 2Cj

5: Sample the feature assignment for kj :
kj ∼ Discrete(~p) where ~p has length K+ and entry pk = 0 unless fjk = 1

6: If target features specified:
Force output features to target values. ki ← ktarget

i , kj ← ktarget
j

7: Compute prob. of sampling this outcome: qk ← pkj
qki

be able to compute the probability of reverse proposals, which are needed
to satisfy the detailed-balance requirement of our Metropolis-Hastings split-
merge proposal framework.

That is, if we perform a merge from Ψ to Ψ∗, the acceptance ratio requires
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Algorithm E.3 MergeProposal( Ψ,y, ỹ, i, j, ka, kb, km)
Input:

Ψ = (F , z) : current discrete assignments in Markov chain state
y, ỹ : observations and lagged observations
i, j : anchor sequences ids
ka, kb : ids of features to merge
km : intended label of new

Optional Input:

Ψtarget : target configuration of F , z
If provided, do not sample. Instead return probability of sampling Ψtarget

Output:

Ψ = (F , z) : proposed discrete assignments in Markov chain state
will have one fewer feature than input config.

Procedure:

1: Construct active set S = {ℓ : fℓka = 1 or fℓkb
= 1}

2: Propose new feature matrix.
Start with input assignments: F ∗ ← F

Delete old features ka, kb: for ℓ ∈ S: f∗
ℓka

= 0, f∗
ℓkb

= 0
Add new feature km: for ℓ ∈ S: f∗

ℓkm
= 1

3: Initialize state sequence with old features replaced with km
z∗ ← z

z
∗(i)
t ← km if z

(i)
t = ka or z

(i)
t = kb

z
∗(j)
t ← km if z

(j)
t = ka or z

(j)
t = kb

4: Obtain non-random transition and emission parameters
θ̂, η̂ ← DeterministicHMMParams(y, ỹ,F ∗, z∗) (Alg. D.4).

5: for non-anchor items ℓ in active set S:
sample state sequence

z∗(ℓ) ∼ SampleStateSequence(ℓ,y,f∗
ℓ , θ̂, η̂

(ℓ)) (Alg. C.3)
update emission parameters to reflect recent assignment

θ̂km ← posterior mean of p(θkm |y, z
∗)

6: Sample state sequence for anchor items i, j
z∗(i) ∼ SampleStateSequence(i,y,f∗

i , θ̂, η̂
(i))

z∗(j) ∼ SampleStateSequence(j,y,f∗
j , θ̂, η̂

(j))

computing the probability of obtaining Ψ from Ψ∗ via a split. In this set-
ting, we know in advance the destination state Ψ, so we don’t actually need
to sample anything, but we do need to walk-through the sampling process
step by step and tally the probability of making each discrete choice that
leads from Ψ∗ back to Ψ. Practically, this can be achieved by augmenting
the sampling procedure to take this desired destination state as an optional
argument. When the split construction process is called with this known des-
tination state Ψtarget = (F target, ztarget), the procedure does not randomly
assign variables, but instead computes the probability of assigning to the
provided target values.

Note that an analogous reverse probability calculation occurs in Alg. C.3
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Algorithm E.4 SampleSplitFeatures(ℓ, [ka, kb],F , θ̂, η̂,y(ℓ),Sprev,F
target )

Input:

ℓ : id of sequence to update
[ka, kb] : ids of features created by current split move
F : binary feature matrix
θ̂, η̂ : deterministic HMM emission, transition parameters
Sprev : set of previously updated items
y, ỹ : observations and lagged observations

Optional Input:

F target : desired output configuration (for computing reverse probabilities
Output:

fℓ,[ka,kb] : updated feature assignments for item ℓ
Note enforced restriction: item ℓ must possess at least one of ka, kb

qf : prob. of sampling new feature assignment under this proposal
Procedure:

1: Define ma,mb as counts of how many previously seen items possess features ka, kb.

ma =
∑

n∈Sprev

fn,ka mb =
∑

n∈Sprev

fn,kb
Nprev = |Sprev|

2: Construct Gibbs conditional probabilities for each possible value of fℓ,[kakb]

p[1 0] ←
ma

Nprev + c

Nprev −mb + c

Nprev + c
p(y(ℓ)|ỹ,fℓ([1 0]), η̂(ℓ), θ̂)

p[0 1] ←
Nprev −ma + c

Nprev + c

mb

Nprev + c
p(y(ℓ)|ỹ,fℓ([0 1]), η̂(ℓ), θ̂)

p[1 1] ←
ma

Nprev + c

mb

Nprev + c
p(y(ℓ)|ỹ,fℓ([1 1]), , η̂(ℓ), θ̂)

where fℓ([a b]) is a length K+ vector whose k-th entry is:











a if k = ka

b if k = kb

fℓk o.w.

3: Compute normalization constant: Zp ← p[1 0] + p[0 1] + p[1 1]

4: if F target exists: then
5: fℓ,[ka kb] ← f target

ℓ,[ka kb]

6: else

7: fℓ,[ka kb] ∼











[1 0] with prob. p[1 0]/Zp

[0 1] with prob. p[0 1]/Zp

[1 1] with prob. p[1 1]/Zp

8: end if

9: qf ←











p[1 0]/Zp if fℓ,[kakb] = [1 0]

p[0 1]/Zp if fℓ,[kakb] = [0 1]

p[1 1]/Zp if fℓ,[kakb] = [1 1]

Record prob. of sampling new feature vector

for sampling the state sequence z(ℓ) for some item ℓ in both split and merge
moves. A total probability qz of transitioning from z to z∗ is computed by
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considering each sequence in turn and tallying up the transition probabil-
ities at each discrete assignment made by the Gibbs block sampler of z(ℓ)

given fixed fℓ and point estimates θ̂, η̂(ℓ). When computing reverse moves,
a target configuration is provided, and rather than actually making ran-
dom assignments the algorithm computes the probability of the sequence of
choices that leads to the target state.

APPENDIX F: MCMC SAMPLING FOR HYPERPARAMETERS

Here we consider MCMC sampling updates for the hyperparameters of
our BP-AR-HMM. First, we describe updates for the mass α and concen-
tration c of the IBP prior on feature matrices, which determine the number
of features and the level of sharing. Later, we outline the update for the
dynamics hyperparameters γ, κ, which respectively influence the uniformity
and stickiness of the transition distributions for each sequence.

F.1. Sampling IBP Hyperparameters. We use the two-parameter
version of the IBP, as derived in (Ghahramani et al., 2006). We recall that
this induces the following prior on left-ordered form feature matrices F

p([F ]|α, c) =
αK+cK+

∏

h≥1Kh!
exp

[

−α
N
∑

i=1

c

c+ i− 1

]

K+
∏

k=1

B(mk, N −mk + c)

(F.1)

where, as before, K+ is the number of total distinct features with at least
one positive entry in F . As in Görür et al. (2006), we place a conjugate
Gamma(aα, bα) prior on α, which leads to the following posterior distribu-
tion on α:

p(α | F , c, aα, bα) ∝ αK+ exp

(

−α
N
∑

n=1

c

c+ n− 1

)

· αaα−1 exp(−bαα)

= Gamma

(

aα +K+, bα +
N
∑

n=1

c

c+ n− 1

)

(F.2)

There is no corresponding conjugate prior for c. Using a Gamma(ac, bc)
prior, we have the following posterior

p(c | F , α, ac, bc) ∝c
K+ exp

(

−α
N
∑

n=1

c

c+ n− 1

)

K+
∏

k=1

B(mk, N −mk + c)

· cac−1e−bcc(F.3)
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To sample c, we use a Gamma random walk proposal distribution qc(·)
with mean set to the current value and fixed variance σ2

c . This is parameter-

ized as qc(c
′|c) = Gamma( c

2

σ2
c
, c
σ2
c
). To decide to accept or reject this proposal,

the usual Metropolis-Hastings ratio is applied. We accept with probability
min(1, r), where

r =
p(F |α, c′)p(c′|ac, bc)

p(F |α, c)p(c|ac, bc)
·
qc(c|c

′)

qc(c′|c)
(F.4)

Let a = c2/σ2
c and b = c/σ2

c . Similarly, let a′ = c′2/σ2
c and b′ = c′/σ2

c . The
ratio of proposal terms reduces to

q(c|c′)

q(c′|c)
=

Gamma(c|a′, b′)

Gamma(c′|a, b)
=

b′a
′

Γ(a′)

ba

Γ(a)

ca
′−1e−b′c

c′a−1e−bc′
(F.5)

We can thus simplify the overall ratio r as:

r =
ℓ(c′)

ℓ(c)

(c′)ac−1e−bcc′

cac−1e−bcc

Γ(a)

Γ(a′)

(b′)a
′

ba
ca

′−1e−b′c

c′a−1e−bc′

=
ℓ(c′)

ℓ(c)

(c′)ac+a′−ae−(bc−b)c′

cac+a−a′e−(bc−b′)c

Γ(a)

Γ(a′)
(σ2

c )
a−a′

=
ℓ(c′)

ℓ(c)

(c′)ac+a′−a

cac+a−a′
e−(c′−c)bc Γ(a)

Γ(a′)
(σ2

c )
a−a′(F.6)

where we used the facts and definitions ba = ca/(σ2
c )

a, b′c = c′b. We further
define ℓ(c) , p(F |α, c) is

ℓ(c) = cK+ exp(−α
N
∑

n=1

c

c+ n− 1
)

K+
∏

k=1

B(mk, N −mk + c)(F.7)

F.2. Sampling Transition Parameters. Recall that the Markovian
transition distribution π that produce the state sequence z is a determin-

istic transform of the sequence-specific weights η. The prior π
(i)
k· |fik = 1 ∼

Dir([. . . γ+ δkk′κ . . .]) is governed by two hyperparameters: a symmetric pa-
rameter γ and the additional sticky bias parameter κ.

Transition hyperparameters are assigned gamma priors γ ∼ Gamma(aγ , bγ)
and κ ∼ Gamma(aκ, bκ). Because of non-conjugacy we rely on Metropolis-
Hastings proposals to iteratively sample γ given κ, and κ given γ. This is for-
malized in Alg. F.2. Each step of this iterative procedure uses a Metropolis-
Hastings random walk gamma proposal distribution qγ(· | ·) or qκ(· | ·), with
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Algorithm F.1 SampleBPHypers()
Input:

F = {fi} : binary feature assignments for all time series
α, c : IBP hyperparameters

Output:

α, c : new HMM hyperparameter values drawn from conditional posterior
Sampler Algorithm Settings:

σ2
c : proposal distribution variance

RIBP : number of iterations to attempt proposals
Procedure:

1: for iterations r = 1, 2, . . . RIBP:
2: Sample α|c,F

α ∼ Gamma

(

aα +K+, bα +
∑N

n=1
c

c+n−1

)

3: Sample c|α,F
c′|c ∼ Gamma(mean = c, var = σ2

c )

c←

{

c′ with prob min(1, r), r defined in Eq. F.6

c otherwise

Algorithm F.2 SampleHMMTransitionHypers()
Input:

F = {fi} : binary feature assignments for all time series
η = {η(i)}: HMM transition weights for all time series
γ, κ : HMM transition hyperparameters

Output:

γ, κ : new HMM hyperparameters drawn from conditional posterior
Sampler Algorithm Settings:

σ2
γ , σ

2
κ : proposal distribution variances

RHMM : number of iterations to attempt proposals
Procedure:

1: for iterations r = 1, 2, . . . RHMM:
2: Sample γ|κ,F ,η

γ′|γ ∼ Gamma(mean = γ, var = σ2
γ)

γ ←

{

γ′ with prob. min(1, rγ), rγ defined in Eq. F.11

γ otherwise

3: Sample κ|γ,F ,η
κ′|κ ∼ Gamma(mean = κ, var = σ2

κ)

κ←

{

κ′ with prob. min(1, rκ), rκ defined in Eq. F.12

κ otherwise
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fixed variance σ2
γ or σ2

κ, and mean set to the current value. This is random
walk update is similar to the updates used to sample c in Alg. F.1.

Since the proposal distributions for γ and κ use fixed variance σ2
γ or σ2

κ,
and mean equal to the current hyperparameter value, we have

qγ(· | γ) = Gamma

(

γ2

σ2
γ

,
γ

σ2
γ

)

qκ(· | κ) = Gamma

(

κ2

σ2
κ

,
κ

σ2
κ

)

.(F.8)

Acceptance ratio for γ. To update γ given κ, the acceptance probability is
min{r(γ′ | γ), 1} with acceptance ratio

r(γ′ | γ) =
p(π | γ′, κ,F )

p(π | γ, κ,F )
·
p(γ′ | aγ , bγ)q(γ | γ

′, σ2
γ)

p(γ | aγ , bγ)q(γ′ | γ, σ2
γ)

(F.9)

where π = {π(i)}, the set of all sequence-specific transition parameters. We
can simplify the right half of this ratio expression using our derivation of F.6.
Recalling the definition Ki =

∑

k fik, the likelihood term may be written as

f(γ) , p(π | γ, κ,F )

=
∏

i

Ki
∏

k=1







Γ(γKi + κ)
(

∏Ki−1
j=1 Γ(γ)

)

Γ(γ + κ)

Ki
∏

j=1

π̃
(i)γ+κδ(k,j)−1

kj







.(F.10)

Plugging this likelihood function in place of ℓ(·) in Eq. F.6 and redefining
appropriate parameters, the acceptance ratio reduces to

rγ =
f(γ′)

f(γ)

(γ′)aγ+a′−a

γaγ+a−a′
e−(γ′−γ)bγ Γ(a)

Γ(a′)
(σ2

γ)
a−a′(F.11)

where a =
γ2

σ2
γ

, a′ =
γ′2

σ2
γ

Acceptance Ratio for κ. The corresponding acceptance ratio for κ is

rκ =
f(κ′)

f(κ)

(κ′)aκ+a′−a

κaκ+a−a′
e−(κ′−κ)bκ Γ(a)

Γ(a′)
(σ2

κ)
a−a′(F.12)

where a =
κ2

σ2
κ

, a′ =
κ′2

σ2
κ

and where the likelihood function only involves the self-transition terms:

f(κ) ,
∏

i

Γ(γKi + κ)Ki

Γ(γ + κ)Ki

Ki
∏

j=1

π̃
(i)γ+κ−1

jj ∝ p(π | γ, κ,F ).(F.13)
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APPENDIX G: TOY DATA EXPERIMENTS: BASIC SAMPLER

Here, we present experiments that verify our most basic proposed MCMC
sampling scheme (without sophisticated moves for adding and removing fea-
tures) using toy data. To add or delete features, we only use the basic birth-
death moves outlined in D.3.1, with emission parameter proposals from the
prior. This is done to demonstrate the basic functionality of the overall
MCMC algorithm (outlined in C) in recovering the true latent structure of
data created via the BP-AR-HMM generative process. We also include here
a comparison to an alternative nonparametric time series model – the hier-
archical Dirichlet process HMM (HDP-HMM) – to emphasize the benefits
of our proposed feature-based model.

Note that later in Section H, we conduct thorough experiments comparing
our many candidate algorithms for adding or deleting features, including
data-driven birth-death moves and split-merge moves.

To study our proposed BP-HMM model, we first generated time-series by
switching among 5 AR(1) models:

y
(i)
t = a

z
(i)
t

y
(i)
t−1 + e

(i)
t (z

(i)
t ),(G.1)

with ak ∈ {−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8} and process noise co-
variance Σk drawn from an IW(3, 0.5) prior. The true feature assignments,
shown in Fig. 1(b), were sampled from a truncated IBP (Ghahramani et al.,
2006) using α = 10 and then used to generate the sequences of Fig. 1(a).
Each row of the feature matrix corresponds to one of the five time series,
and the columns represent the different AR models with a white square
indicating that a given time series uses that dynamical mode.

The resulting feature matrix, averaged over 10,000 MCMC samples, is
shown in Fig. 1(c). We discard features which explain less than 2% of a
time series observations, and ensure consistent labeling across iterations by
mapping to the closest ground truth features via Hamming distance. The
BP-HMM recovers most of the true latent structure. One noticeable discrep-
ancy is the absence of a4 (green in Fig. 1(a)) in the fifth time series, which
occurs because this feature is used in less than 5% of that series. The non-
parametric nature of the model also causes a “tail” in the estimated matrix
because of the (infrequent) use of additional features.

G.1. Comparison to the HDP-AR-HMM. As an alternative to the
BP-AR-HMM, one might propose an architecture based on the hierarchical
Dirichlet process of Teh et al. (2006), such as the HDP-AR-HMMs of Fox
et al. (2011a) tied together with a shared set of transition and dynamic pa-
rameters. For an HDP-AR-HMM truncated to L possible dynamical modes,
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Fig 1. (a) Observed sequences for 5 switching AR(1) time series colored by true mode
sequence. Images of (b) true feature matrix and (c) estimated feature matrix averaged over
10,000 MCMC samples taken from 100 trials every 10th sample. Each row corresponds to
a different time series, and each column a different autoregressive model. White indicates
active features. Although the true model is defined by only 9 possible features, we show 20
columns to display the uncertain “tail” estimated by the BP-AR-HMM, due to some sam-
ples that instantiate additional modes to explain the data. The estimated feature matrices
are produced from mode sequences mapped to the ground truth labels according to minimum
Hamming distance, and discarding features assigned to ≤ 2% of an item’s observations.

this model is specified as:

(G.2)

β ∼ Dir(γ/L, . . . , γ/L)

πj | β ∼ Dir(αβ1, . . . , αβj−1, αβj + κ, αβj+1, . . . , αβL)

z
(i)
t ∼ π

z
(i)
t−1

, y
(i)
t = A

z
(i)
t

ỹ
(i)
t + e

(i)
t (z

(i)
t ).

Here, α and γ are a set of concentration parameters that define the HDP
and κ is the sticky hyperparameter of the sticky HDP-HMM (Fox et al.,
2011b); these hyperparameters are often given priors as well.

Segmentation Performance. To demonstrate the difference between this
HDP-AR-HMM and the BP-AR-HMM, we generated data for three switch-
ing AR(1) processes. The first two time series, with four times the data
points of the third, switched between dynamical modes defined by ak ∈
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{−0.8,−0.4, 0.8} and the third time series used ak ∈ {−0.3, 0.8}. The re-
sults shown in Fig. 2 indicate that the multiple HDP-AR-HMM model,
which assumes all time series share exactly the same transition matrices
and dynamic parameters, typically describes the third time series using
ak ∈ {−0.4, 0.8} since this assignment better matches the parameters defined
by the other (lengthy) time series. This common grouping of two distinct
dynamical modes leads to the large median and 90th Hamming distance
quantiles shown in Fig. 2(b). The BP-AR-HMM, on the other hand, does
distinguish these distinct modes (see Fig. 2(c)), since the penalty in not
sharing a behavior is only in the feature matrix; once a unique feature is
chosen, it does not matter how the time series employs it. Example seg-
mentations representative of the median Hamming distance error are shown
in Fig. 2(d)-(e). These results illustrate that the IBP-based feature model
emphasizes choosing behaviors rather than assuming all time series perform
minor variations of the same dynamics.

For the experiments above, we placed a Gamma(1, 1) prior on α and γ,
and a Gamma(100, 1) prior on κ. The gamma proposals used σ2

γ = 1 and
σ2
κ = 100 while the MNIW prior was given M = 0, K = 0.1 ∗ Id, n0 = d+2,

and S0 set to 0.75 times the empirical variance of the joint set of first-
difference observations. At initialization, each time series was segmented
into five contiguous blocks, with feature labels unique to that sequence.

Predictive Performance. Using the data generation process which cre-
ated the sequences in Fig. 2(a), we generated a set of 100 held-out test
datasets for Objects 1, 2, and 3. Each of the test sequences had length 1000
(in contrast to the training sequences, which had length 2000, 2000, and 500
respectively). Based on 2500 samples taken from 50 chains at MCMC iter-
ations, we computed the log-likelihood of each of the 100 held-out datasets
for both the MCMC samples of the BP-AR-HMM and HDP-AR-HMM. The
results are summarized in the histogram of Fig. 3.

Since the BP-AR-HMM consistently identifies the unique dynamical mode
of ak = −0.3 used by Object 3 while the HDP-AR-HMM does not, we see
from Fig. 3 that the mass of the BP-AR-HMM predictive log-likelihood is
shifted positively by roughly 100 relative to the HDP-AR-HMM. In addition,
the HDP-AR-HMM histogram has a heavy tail, skewed towards lower log-
likelihood, whereas the BP-AR-HMM does not.

To summarize, while both the HDP-AR-HMM and BP-AR-HMM define
global libraries of infinitely many behaviors, the HDP-AR-HMM assumes
each sequence selects the same finite subset of behaviors and switches be-
tween them according to a global transition matrix. In contrast, the BP-
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Fig 2. (a) Observation sequences for 3 switching AR(1) time series colored by true mode
sequence. The first two sequences are four times as long as the third. (b)-(c) Focusing solely
on the third sequence, the median (solid blue) and 10th and 90th quantiles (dashed red) of
Hamming distance from ground truth over 1000 trials are displayed for the HDP-AR-HMM
model (Fox et al., 2011a) and the BP-AR-HMM, respectively. (d)-(e) Examples of typical
segmentations into behavior modes for the three time series at MCMC iteration 1000 for
the two models. The top and bottom panels display the estimated and true sequences,
respectively, and the color coding corresponds exactly to (a). For example, time series 3
switches between two modes colored by cyan and maroon.
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Fig 3. Histogram of the predictive log-likelihood of 100 held-out data using the inferred
parameters sampled every 10th iteration from MCMC iterations 500-1,000 from 50 inde-
pendent chains for the BP-AR-HMM and HDP-AR-HMM run on the data of Fig. 2(a).

AR-HMM allows each time series to select its own subset of behaviors and
its own transition probabilities. The toy data analyzed here matched the
HDP-AR-HMM assumptions of global transition matrix and mostly simi-
lar behaviors (for Objects 1 and 2). However, the BP-AR-HMM can better
model the unique feature used in Object 3, which explains the improved
predictive performance and illustrates the benefit of our flexible framework.

APPENDIX H: TOY DATA EXPERIMENTS: SPLIT-MERGE +
DATA-DRIVEN SAMPLER

Here we investigate several possible sampling algorithms for adding or
deleting features from our BP-HMM model. We use toy data with known
ground-truth generative parameters, and compare each algorithm’s efficiency.

We consider several candidate algorithms. First, the baseline birth-death
moves with emission parameter proposals from the prior (Prior), as pre-
sented in Fox et al. (2009). Next, the continuous parameter data-driven
birth-death moves (denoted “DD”) from Hughes et al. (2012). We also con-
sider two variants of our split-merge moves: (1) “SM-RGS”: split-merge
moves based on random allocation followed by restricted Gibbs sampling,
and (2) “SM-Seq”: sequential allocation spit-merge moves (as advocated in
Sec. 6 and in Hughes et al. (2012)). Our “SM-RGS” approach attempts to
faithfully represent a straight-forward extension of Jain and Neal (2004)’s
algorithm for Dirichlet process mixture models to the BP-HMM setting. All
key variables are sampled: F , z,θ, and η, using modifications of the algo-
rithms in C. We’ll see that our proposed sequential allocation method (which
only samples F , z) is much more efficient at adding needed features.

For every experiment, we interleave the chosen move for adding/deleting
features with updates to shared features of F , as well as updates to HMM
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continuous parameters θ,η and block sampling of z as outlined in Sec. 5 and
App. C. Note that we do not consider the more effective “zDD” data-driven
birth-death moves that we use in the motion capture experiments in Sec. 8,
as we found these to have similar performance as the regular “DD” moves
on the simple toy datasets considered here.

For each dataset and sampling algorithm, we run many independent
MCMC chains and rank from “best” to “worst” according to joint prob-
ability over the final 20% of the run. Each sampler runs for a fixed length
of time, so comparisons are fair despite the fact that one SM iteration may
be more costly than a Prior iteration. We fix the BP hyperparameter to
α = 2 and HMM hyperparameters to γ = 2, κ = 200, to match the high
self-transition probability used to generate the data. This allows fair com-
parison of the different inference techniques for the parameters of interest:
F , z.

We study performance on two synthetic datasets. Each dataset uses dif-
ferent emission distributions for observed sequence y; we consider Gaus-
sian emissions of 8 dimensions, and a VAR(1) process with 5 dimensions.
These diverse formats allow validation that the differences between sampling
methods do not depend on a particular choice of likelihood. Each dataset is
generated using 8 true features with hand-chosen emission parameters θ.

First, we study how well each sampler creates necessary features from
scratch. We initialize with just one feature used by all items, and examine
how many true states are recovered after one hour of computer time across
10 runs. We show trace plots as well as illustrations of recovered emission
parameters θ in Fig. 4. All runs of both SM-Seq and DD moves find all 8 true
states within several minutes, while no Prior run or SM-RGS run recovers
all true states, remaining stuck with merged versions of true features even
after an hour of computation time. SM-RGS seems to fail because it must
overcome a random initial configuration, and explore a higher-dimensional
space (including θ, η). In contrast, our SM-Seq method only explores the
space of discrete assignments, and intelligently allocates data items to newly-
proposed features in just one sweep. Note that DD moves add new features
most rapidly due to low computational cost, since each proposal requires only
a single sequence’s data, while SM moves must sweep through all sequences
in the active set S to construct a single proposal.

Next, we study the ability of various BP-HMM samplers to remove fea-
tures starting from a redundant initialization, diagrammed in Fig. 5(a). The
data are generated by 8 true states. To create a difficult initial configuration,
we divide the sequences into two sets. For the first set, we initialize both
fi and z(i) to the ground truth. For the second set, we initialize with the
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Fig 4. Feature creation assessment on 100 toy data sequences generated by a BP-HMM
with Gaussian ( left) and AR ( right) likelihoods. Each run begins with one feature used by
all items, and must add new features via MCMC using either sequentially-allocated split-
merge (SM-Seq), restricted Gibbs scan split-merge (SM-RGS), or reversible-jump moves
with data-driven (DD) or prior (Prior) proposals. Top: Trace plots of log joint probability
over time. Bottom: Emission parameters θ for all hidden states recovered by each inference
method after 1 hour of computer time. We show results for the top-ranked runs (by joint
log probability) for baselines (Prior=row 1, SM-RGS=row 2) alongside the worst-ranked
runs of our novel methods (SM-Seq=row 3,DD=row 4) to demonstrate the superiority of
our new moves. Gaussian θ = (µ,Σ) and AR θ = (A,Σ) shown as contour lines of the
covariance matrix in first two dimensions, with location determined by µ,A.

ground truth patterns for fi and z(i), but with feature labels shifted by 8.
The duplication of features creates a challenging scenario for any sampling
scheme since it must successfully merge down to one set of true states when
each sequence is already stuck in a local optimum.

We show trace plots of all sampler methods and recovered feature ma-
trices in Fig. 5. We observe that for Gaussian and AR likelihoods, the SM
moves quickly converge down to a mode with all redundant states removed,
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Fig 5. Feature removal on a “redundant features” task using various sampling methods
for BP-HMM toy data. Top: trace plots with various emission types. Bottom: Initial and
recovered feature matrices F using autoregressive (AR) sequences. (a) Initial “redundant”
configuration, with duplicate copies of the 8 true states, (b) F sampled after 1 hour by best
Prior run, (c) F sampled after 1 hour by best SM-Seq run, and (d) ground truth F used
in data generation process.

sometimes within five minutes. In contrast, both DD and Prior reversible
jump proposals never merge down to the 8 true features within the alotted
hour. Overall, we observe that our sequentially-allocated SM moves make
significant improvements over more local samplers in removing redudant
features, regardless of the emissions used.

Together, these experiments demonstrate the importance of both DD and
split moves for exploring new features, and merge moves for removing fea-
tures via proposals that can change large portions of the feature assignments
F simultaneously. As such, we recommend a sampler that interleaves SM
and DD moves in practice. This combination leverages both the speed of the
DD moves in feature creation and the efficiency of merge moves in feature
deletion.

APPENDIX I: MOCAP EXPERIMENTS: HYPERPARAMETER
SETTINGS

For all experiments on motion capture data, regardless of which inference
algorithm was employed, we used the same hyperparameter settings. We
describe these settings here.
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HMM and IBP hyperparameters. We sample HMM transition hy-
perparameters γ, κ and IBP hyperparameters α, c at each iteration of every
experiment. The algorithms used are in Alg. F.2 and Alg. F.1, respectively.
Each of these procedures involves several iterations where one hyperparam-
eter is sampled with the other fixed, then vice versa. We found that 10-25
iterations yielded reasonable acceptance rates without noticeable computa-
tional cost.

MNIW likelihood hyperparameters. The matrix-normal-inverse-Wishart
likelihood requires several hyperparameters: scale matrix S0, degrees of free-
dom ν0, and column-wise precision matrix R0. Together, these specify a prior
on autoregressive coefficients A and covariance Σ for a first-order AR process
with D = 12 dimensional observations as follows:

Σ ∼ W−1
D (ν0, S0)(I.1)

A|Σ ∼MND(0,Σ, R0)(I.2)

We set ν0 = D+2, S0 to 0.5 times the empirical covariance of first differ-
ences of all observation sequences, and R0 = 0.5ID, where I is the identity
matrix with dimensions D-by-D. We note that in earlier published experi-
ments (Fox et al., 2009) we set S0 to 5 times the empirical covariance, rather
than 0.5 as we do here and in Fox et al. (2009). We made this choice because
with our improved inference, we need not specify such a vague prior. Realis-
tically, individual discovered behaviors should have less variability than all
motion sequences taken together.

We validated our better setting of these parameters by performing MCMC
on a “cheating” initialization. Starting from the human annotated ground
truth of the small 6 sequence motion capture dataset, we found that under
these new hyperparameter settings the sampler stayed in the “ground truth”
configuration throughout thousands of iterations. In contrast, a sampler ini-
tialized to truth under the more vague prior on S0 quickly wandered away
from this ground truth, gaining in likelihood by deleting some unique behav-
iors. Because our goal is comparing the segmentation recovered by sampler
runs to the ground truth, we found it better to use hyperparameter settings
in which ground truth is a (possibly local) mode of the posterior. Note that
this difference in likelihood parameter settings might explain why in our
experiments the BPHMM sampler from the prior performs somewhat worse
in terms of Hamming distance (≈ 0.4 vs.≈ 0.3) on the 6 sequence dataset
than reported earlier in Fox et al. (2009).
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