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A Comparison of Supervised Latent Variable Training Frameworks

In this section, we expand on the main paper’s discussion of previous frameworks for training
supervised latent variable models. In particular, we recap our formal justification for our proposed
prediction-constrained (PC) training objective and provide detailed mathematical comparisons to
alternative objectives.

Recall that our fundamental contribution is the prediction-constrained training objective:

min
φ,η
−
[∑D

d=1 log p(xd|φ, α)
]
− log p(φ, η), (1)

subject to −
∑D
d=1 log p(yd|xd, φ, η, α) ≤ ε.

Lagrange multiplier theory allows us to transform the inequality constrained objective above to an
equivalent unconstrained problem:

min
φ,η
−

D∑
d=1

[
log p(xd|φ) + λε log p(yd|xd, φ, η)

]
− log p(φ, η). (2)

Here λε > 0 is a scalar Lagrange multiplier. For each distinct value of λε, a solution to Eq. (2)
matches a solution to Eq. (1) for some ε. The relationship between λε and ε is monotonic, but it does
not have a known analytic form; we must search over the one-dimensional space of penalties λε for
an appropriate value.

We can further expand our unconstrained PC training objective by making the marginalization over
the hidden variables πd explicit:

min
φ,η
−

D∑
d=1

[
log p(xd|φ) + log

(∫
πd

p(yd|πd, η)p(πd|xd, φ, α)dπd
)λε]

− log p(φ, η). (3)

While the definition of the PC training objective in Eq. (2) is straightforward, it has desirable features
that are not shared by other supervised training objectives for topic models. In this appendix we
contrast the PC objective with several other approaches, often comparing to methods from the topic
modeling literature to give concrete alternatives.

A.1 Advantages over standard joint likelihood training

The most standard training method is to find a point estimate of global parameters φ, η that maximizes
the (regularized) joint log-likelihood log p(x, y | φ, η). Related Bayesian methods that approximate
the posterior distribution p(φ, η | x, y), such as variational methods (Wainwright and Jordan, 2008)
and Markov chain Monte Carlo methods (Andrieu et al., 2003), estimate moments of the same joint
likelihood relating hidden variables πd to data xd and labels yd.

For example, supervised LDA (McAuliffe and Blei, 2008; Wang et al., 2009) learns latent topic
assignments πd by optimizing the joint probability of bag-of-words document representations xd
and document labels yd. One of several problems with this joint likelihood objective is cardinality
mismatch: the relative sizes of the random variables xd and yd can reduce predictive performance. In
particular, if yd is a one-dimensional binary label but xd is a high-dimensional word count vector,
the optimal solution to maxφ,η log p(xd, yd|φ, η) will often be indistinguishable from the solution to
the unsupervised problem of modeling the data x alone. Low-dimensional labels can have neglible
impact on the joint density compared to the high-dimensional words xd, causing learning to ignore
subtle features that are critical for the prediction of yd from xd. Despite this issue, recent work
continues to use this training objective (Wang and Zhu, 2014; Ren et al., 2017).

A.2 Advantages over maximum conditional likelihood training

Motivated by similar concerns about joint likelihood training, Jebara and Pentland (1999) introduce
a method to explicitly optimize the conditional likelihood log p(y | x, φ, η) for the Gaussian mix-
ture model. They replace the conditional likelihood with a more tractable lower bound, and then
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monotonically increase this bound via a coordinate ascent algorithm they call conditional expectation
maximization (CEM). Chen et al. (2015) instead use a variant of backpropagation to optimize the
conditional likelihood of a supervised topic model.

One concern about the conditional likelihood objective is that it exclusively focuses on the prediction
task; it need not lead to good models of the data x, and it cannot incorporate unlabeled data. In
contrast, our prediction-constrained (PC) training allows a principled tradeoff between optimizing
the marginal likelihood of data and the conditional likelihood of labels given data. Plus, PC training
naturally handles partially labeled datasets.

A.3 Advantages over label replication

We are not the first to notice that high-dimensional data xd can swamp the influence of low-
dimensional labels yd. Among practitioners, one common workaround to this imbalance is to
retain the symmetric maximum joint likelihood objective, but to replicate each label yd as if it were
observed R times per document: {yd, yd, . . . , yd}. Applied to supervised LDA, label replication
leads to an alternative power sLDA topic model (Zhang and Kjellström, 2014).

Label replication still leads to nearly the same per-document joint density, except that the likelihood
density is raised to the R-th power: p(yd | πd, η)R. While label replication can better “balance” the
relative sizes of xd and yd when R� 1, performance gains over standard supervised LDA are often
negligible because this approach does not address the assymmetry issue. To see why, we examine the
label-replicated training objective when written as an integral over the hidden variable πd:

min
φ,η

−
D∑
d=1

log

[∫
p(πd | α)p(xd | πd, φ)p(yd | πd, η)R dπd

]
− log p(φ, η). (4)

It is worthwhile to contrast the label replication objective here in Eq. (4) with our PC objective in
Eq. (3), to see that they are formally distinct. Eq. (4) upweights the label likelihood p(yd|πd) inside
the integral over πd, while our PC approach upweights the entire integral p(yd|xd) =

∫
p(yd, πd |

xd)dπd. Thus, our PC approach emphasizes the asymmetric task of predicting labels from data (yd
from xd), while label replication only emphasizes the connection between labels from hiddens (yd
from πd).

It is easy to find examples where the optimal solution to the label replication objective performs
poorly on the target task of predicting y given only x, because the training has not directly prioritized
this asymmetric prediction. In the main paper, Fig. 1 provides an intuition-building example where
maximum likelihood training with label replication fails to give good prediction performance for
any value of the replication weight R > 1, while our PC approach can do much better when λ is
sufficiently large. (Note: In Fig. 1 the replication weight R is renamed as λ). Crucially, the reason
our approach is better is that it is more resistant to model misspecification, while label replication
requires the model assumptions about both x and y to become more and more correct as R increases.

A.4 Advantages over posterior regularization

The posterior regularization (PR) framework introduced by Graça et al. (2008), and later refined
in Ganchev et al. (2010), is notable early work which applied explicit performance constraints to
latent variable model objective functions. Most of this work focused on models for only two local
random variables: data xd and hidden variables πd, without any explicit labels yd. Mindful of this,
we can naturally express the PR objective in our notation, explaining data x explicitly via an objective
function and incorporating labels y only later in the performance constraints.

The PR approach begins with the same overall goals of the expectation-maximization treatment of
maximum likelihood inference: frame the problem as estimating an approximate posterior q(πd | v̂d)
for each latent variable set πd, such that this approximation is as close as possible in KL divergence
to the real (perhaps intractable) posterior p(πd | xd, yd, φ, η). Generally, we select the density q to be
from a tractable parametric family with free parameters v̂d restricted to some parameter space v̂d ∈ V

3



which makes q a valid density. This leads to the objective

min
φ,{v̂d}Dd=1

− log p(φ)−
D∑
d=1

L(xd, v̂d, φ), (5)

L(xd, v̂d, φ) , Eq
[
log p(xd, πd | φ)− log q(πd | v̂d)

]
≤ log p(xd|φ). (6)

Here, the function L is a strict lower bound on the data likelihood log p(xd | φ). The popular EM
algorithm optimizes this objective via coordinate descent steps that alternately update variational
parameters v̂d and model parameters φ. The PR framework of Graça et al. (2008) adds additional
constraints to the approximate posterior q(πd | v̂d) so that some additional loss function of interest,
over both observed and latent variables, has bounded value under the distribution q(πd):

Posterior Regularization (PR): Eq(πd)
[
loss(yd, ŷ(xd, πd, η))

]
≤ L. (7)

For our purposes, one possible loss function could be the negative log likelihood for the label y:
loss(yd, ŷ(xd, πd, η)) = − log p(yd | πd, η). It is informative to directly compare the PR constraint
above with the PC objective of Eq. (2). Our approach directly constrains the expected loss under the
true hidden-variable-from-data posterior p(πd|xd):

Prediction Constrained (PC): Ep(πd|xd)
[
loss(yd, ŷ(xd, πd, η))

]
≤ L. (8)

In contrast, the PR approach in Eq. (7) constrains the expectation under the approximate posterior
q(πd). This posterior does not have to stay close to true hidden-variable-from-data posterior p(πd|xd).
Indeed, when we write the PR objective in unconstrained form with Lagrange multiplier λ, and
assume the loss is the negative label log-likelihood, we have:

min
φ,η,{v̂d}Dd=1

−Eq

[
D∑
d=1

log p(xd, πd | φ) + λ log p(yd | πd, η)− log q(πd|v̂d)

]
− log p(φ, η) (9)

Shown this way, we reach a surprising conclusion: the PR objective reduces to a lower bound on the
symmetric joint likelihood with labels replicated λ times. Thus, it will inherit all the problems of
label replication discussed above, as the optimal training update for q(πd) incorporates information
from both data xd and labels yd. However, this does not train the model to find topics φ which lead
to good estimates of the asymmetric predictive density of labels given data p(yd | xd, φ, η), which
we show is critical for good predictive performance.

A.5 Advantages over maximum entropy discrimination and regularized Bayes

Another key thread of related work putting constraints on approximate posteriors is known as
maximum entropy discrimination (MED), first published in Jaakkola et al. (1999b) with further details
in followup work (Jaakkola et al., 1999a; Jebara, 2001). This approach was developed for training
discriminative models without hidden variables, where the primary innovation was showing how to
manage uncertainty about parameter estimation under max-margin-like objectives. In the context of
LVMs, this MED work differs from standard EM optimization in two important and separable ways.
First, it estimates a posterior for global parameters q(φ) instead of a simple point estimate. Second,
it enforces a margin constraint on label prediction, rather than just maximizing log probability of
labels. We note briefly that Jaakkola et al. (1999a) did consider a MED objective for unsupervised
latent variable models (see their Eq. 48), where the constraint is directly on the expectation of the
lower-bound of the log data likelihood. The choice to constrain the data likelihood is fundamentally
different from constraining the labels-given-data loss, which was not done for LVMs by the original
MED work yet is more aligned with our focus with high-quality predictions.

The key application MED to supervised LVMs has been Zhu et al. (2012)’s MED-LDA, an extension
of the LDA topic model based on a MED-inspired training objective. Later work developed similar
objectives for other LVMs under the broad name of regularized Bayesian inference (Zhu et al.,
2014). To understand these objectives, we focus on Zhu et al. (2012)’s original unconstrained
training objectives for MED-LDA for both regression (Problem 2, Eq. 8 on p. 2246) and classification
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(Problem 3, Eq. 19 on p. 2252), which can be fit into our notation1 as follows:

min
q(φ,η),{v̂d}Dd=1

KL(q(φ, η)||p0(φ, η))− Eq(φ,η)
[ D∑
d=1

L(xd, v̂d, φ)
]

+C

D∑
d=1

loss(yd,Eq(φ,η,πd)[ŷd(xd, πd, η)])

Here C > 0 is a scalar emphasizing how important the loss function is relative to the unsupervised
problem, p0(φ, η) is some prior distribution on global parameters, and L(xd, v̂d, φ) is the same
lower bound as in Eq. (5). We can make this objective more comparable to our earlier objectives
by performing point estimation of φ, η instead of posterior approximation, which is reasonable in
moderate to large data regimes, as the posterior for the global parameters φ, η will concentrate. This
choice allows us to focus on our core question of how to define an objective that balances data x and
labels y, rather than the separate question of managing uncertainty during this training. Making this
simplification by substituting point estimates for expectations, with the KL divergence regularization
term reducing to the log prior R(φ, η) = − log p0(φ, η), and the MED-LDA objective becomes:

min
φ,η,{v̂d}Dd=1

R(φ, η)−
D∑
d=1

L(xd, v̂d, φ) + C

D∑
d=1

loss(yd,Eq(πd)[ŷd(xd, πd, η)]). (10)

Both this objective and Graça et al. (2008)’s PR framework consider expectations over the approximate
posterior q(πd), rather than our choice of the data-only posterior p(πd|xd). However, the key
difference between MED-LDA and the PR objectives is that the MED-LDA objective computes the
loss of an expected prediction (loss(yd,Eq[ŷd])), while the earlier PR objective in Eq. (7) penalizes
the full expectation of the loss (Eq(πd)[loss(yd, ŷd)]). Earlier MED work (Jaakkola et al., 1999a) also
suggests using an expectation of the loss, Eq(φ,πd)[loss(yd, ŷd(xd, πd, η))]. Decision theory argues
that the latter choice is preferable when possible, since it should lead to decisions that better minimize
loss under uncertainty. We suspect that MED-LDA chooses the former only because it leads to more
tractable algorithms for their chosen loss functions.

Motivated by this decision-theoretic view, we consider modifying the MED-LDA objective of Eq. (10)
so that we take the full expectation of the loss. This swap can also be justified by assuming the loss
function is convex, as are both the epsilon-insensitive loss and the hinge loss used by MED-LDA, so
that Jensen’s inequality may be used to bound the objective in Eq. (10) from above. The resulting
training objective is:

min
φ,η,{v̂d}Dd=1

R(φ, η)−
D∑
d=1

L(xd, v̂d, φ) + C

D∑
d=1

Eq(πd)
[
loss(yd, ŷd(xd, πd, η))

]
. (11)

In this form, we see that we have recovered the symmetric maximum likelihood objective with label
replication from Eq. (4), with y replicated C times. Thus, even this MED effort fails to properly
handle the asymmetry issue we have raised, possibly leading to poor generalization performance.

1 We note an irregularity between the classification and regression formulation of MED-LDA published by
Zhu et al. (2012): while classification-MED-LDA included labels y only the loss term, the regression-MED-LDA
included two terms in the objective that penalize reconstruction of y: one inside the likelihood bound term L
as well as inside a separate epsilon-insensitive loss term. Here, we assume that only the loss term is used for
simplicity.
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B Dataset Descriptions

B.1 Toy Data: 3x3 Bars with Misspecified Labels

Our toy data analysis task is designed to illustrate why many existing methods fail to address the
asymmetry and cardinality imbalance while our proposed PC-sLDA method succeeds.

We purposely construct this dataset so the sLDA topic model is somewhat misspecified: the best
topics according to the unsupervised or supervised maximum likelihood objective perform little better
than chance, but there is some word-cooccurance structure that can be found while still attaining
perfect label predictions. The data exhibits cardinality imbalance: there are about 50 words per
document in xd but only one binary label. More importantly, it exhibits asymmetric embedding: for
many proposed topics and weights, there is huge difference between πd estimated when both x and y
are observed (training mode), and when only x is observed (prediction mode).

This toy domain has 9 possible vocabulary terms, canonically arranged in a 3× 3 square grid. We
generate each document via a 3-step process. First, we generate data count vectors xd, each of
size 40 to 60 words, by drawing from exactly one or two of the K = 4 horizontal or vertical “bar”
topics shown in the main paper (Fig. 1). None of these bars emit the top left corner word (vocab
index 1 of 9), so at this stage only xd,2:9 can be non-zero, where non-zero values of 8-22 are typical.
Second, we generate the label yd independently of xd,2:9, by flipping a biased coin (20% probability
of positive label). Finally, for those documents that are positive, we deterministically set xd,1 = 1.
Thus, the top-left corner word is an unambiguous signal of the document’s target label, but is perfectly
uncorrelated with any other words. Furthermore, its typical count is much less than other words.

The final corpus includes 500 training documents, 500 validation documents, and 500 test documents.
Each document has between 40 and 60 tokens. Example documents with positive labels yd = 1 and
negative labels yd = 0 are shown in Fig. B.1.

yd = 1 yd = 1 yd = 1 yd = 1 yd = 1 yd = 1 yd = 1 yd = 1 yd = 1 yd = 1 0

5

10

w
or

d 
ct

yd = 0 yd = 0 yd = 0 yd = 0 yd = 0 yd = 0 yd = 0 yd = 0 yd = 0 yd = 0 0

5

10
w

or
d 

ct

Fig. B.1: Example documents d for 3x3 bars task, shown with associated binary labels yd (top row has yd = 1,
bottom row has yd = 0). Note the special colormap chosen to highlight that the “signal” word (top left corner)
appears with either a count of 1 or 0, while other words when present appear at much higher counts ≥ 10. Thus,
generative objectives will often favor modeling these other words, while the signal word is the only reliable
feature in the label prediction task.

Dataset access. Our curated labeled dataset and the code required to repro-
duce it can be obtained from our public codebase: https://github.com/dtak/
prediction-constrained-topic-models/datasets/toy_bars_3x3/

B.2 Movie reviews

Raw text from movie reviews of four critics comes from scaledata v1.0 dataset released by Pang et
al (Pang and Lee, 2005)2. Given plain text files of movie reviews, we tokenized and then stemmed
using the Snowball stemmer from the nltk Python package, so that words with similar roots (e.g.
film, films, filming) all become the same token. We removed all tokens in Mallet’s list of common
English stop words as well as any token included in the 1000 most common first names from the
US census. We added this step after seeing too many common first names like Michael and Jennifer
appear meaninglessly in many top-word lists for trained topics. We manually whitelisted "oscar" and
"tony" due to their saliency to movie reviews sentiment. We then performed counts of all remaining
tokens across the full raw corpus of 5006 documents, discarding any tokens that appear at least once

2http://www.cs.cornell.edu/people/pabo/movie-review-data/
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in more than 20% of all documents or less than 30 distinct documents. The final vocabulary list has
5375 terms.

Each of the 5006 original documents was then reduced to this vocabulary set. We discarded any
documents that were too short (less than 20 tokens), leaving 5005 documents. Each document has a
binary label, where 0 indicates it has a negative review (below 0.6 in the original datasets’ 0-1 scale)
and 1 indicates positive review (>= 0.6). This 0.6 threshold matches a threshold previously used in
the raw data’s 4-category scale to separate 0 and 1 star reviews from 2 and 3 (of 3) star reviews. Data
pairs (xd, yd) were then split into training, validation, test. Both validation and test used 10 % of all
documents, evenly balancing positive and negative labeled documents. The remaining documents
were allocated to the training set.

Label statistics. The frequency of each binary label in the Movies training set is given in the table
below:

attribute fraction with attribute count with attribute
more_than_2_out_of_4_stars 0.578 2315/4004

Word statistics. The Movies task training set’s words-per-document statistics are in the table below:

0% 1% 10% 50% 90% 99% 100%
unique tokens per doc 29 69 103 151 205 295 438

total tokens per doc 29 77 120 183 260 403 644

Dataset access. Our curated version of this dataset and the code required to re-
produce it can be obtained from our public codebase: https://github.com/dtak/
prediction-constrained-topic-models/datasets/movie_reviews_pang_lee/

B.3 Yelp reviews

We use raw text of online Yelp reviews from the Yelp dataset challenge (Yelp Dataset Challenge,
2016) to construct a multi-label binary dataset. This dataset includes text reviews about businesses.
The businesses have associated meta data. We consider only businesses who have values for seven
interesting binary attributes: “reservations accepted”, “deliver offered”, “alcohol served”, “good for
kids”, “price range > 1” 3, “outdoor seating” and “wifi offered”.

To construct the documents, we concatenate all reviews about a single business. Thus, each business
is represented by a single document. We also prune the vocabulary, removing rare words that occur
in fewer than 5 documents and removing very common words that occur in more than 50% of the
documents. Finally, we sort the remaining words by tf-idf score and keep the top 10,000 scoring
words as our final vocabulary.

The resulting corpus includes over 29,000 documents (23159 training, 2895 validation, and 2895 test)
and a total of 43,236,060 observed words.

Label statistics. The frequency of each binary label in the Yelp training set is given in the table
below:

attribute fraction with attribute count with attribute
reservations 0.418 9690/23159

delivery 0.206 4774/23159
alcohol 0.551 12762/23159

kid_friendly 0.835 19327/23159
expensive 0.610 14127/23159

outdoor_seating 0.416 9628/23159
wifi 0.428 9907/23159

Word statistics. The training set’s words-per-document statistics are in the table below:
3 Price range is given as an integer 1-4 where 1 is very cheap and 4 is very expensive. We turn this into a

binary attribute by separating price range 1 from higher price ranges 2, 3 and 4.
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0% 1% 10% 50% 90% 99% 100%
unique tokens per doc 9 35 112 464 1612 3445 7461

total tokens per doc 9 41 147 772 4178 16794 213264

Dataset access. The terms of the Yelp dataset release prevent us from sharing our curated labeled
dataset directly. However, we will happily share our preprocessing code to help interested parties
recreate our curated dataset from the original 2016 data release. Please contact the first author via
email: mike@michaelchughes.com.

B.4 Antidepressant Electronic Health Record (EHR) Dataset

We studied a broad cohort of hundreds of thousands patients drawn from a large academic medical
center in New England and its affiliated outpatient network over a period of several years between
1997 and 2014. The cohort focused on individuals between age 18 and 80 who had at least one ICD9
diagnostic code for major depressive disorder (ICD9 codes 296.2x or 3x or 311). Our institutional
review board approved the study protocol, waiving the requirement for informed consent.

From this broad cohort, we extracted all ICD-9 diagnostic codes, CPT procedure codes, and inpatient
and outpatient medication prescriptions to represent patient history via a bag-of-codewords. We then
identified a subset of patients who met a definition of stable treatment using a list of common anti-
depressants marked as “primary” treatments for major depressive disorder by clinical collaborators.
We labeled a treatment interval of a patient’s record “stable” if all prescription events in the interval
used the same subset of primary drugs, the interval lasted at least 90 days, and encounters occurred at
least every 13 months.

Applying this criteria, we identified 29774/3721/3722 (training/validation/test) patients who met our
stable treatment definition and also had sufficient history (a record containing at least two events
before the first MDD prescription).

For each patient, we extracted a bag-of-codewords xd of 5126 possible codewords (representing
medical history before any stable treatment) and binary label vector yd, marking which of 11 prevalent
anti-depressants (if any) were used in known stable treatment.

Label statistics. The frequency of each binary label in the Antidepressant task training set is given
in the table below:

attribute fraction with attribute count with attribute
nortriptyline 0.029 850/29774
amitriptyline 0.038 1138/29774

bupropion 0.139 4132/29774
fluoxetine 0.167 4972/29774
sertraline 0.155 4609/29774

paroxetine 0.080 2392/29774
venlafaxine 0.054 1606/29774
mirtazapine 0.032 961/29774
citalopram 0.252 7496/29774

escitalopram 0.050 1499/29774
duloxetine 0.029 853/29774

Word statistics. The Antidepressant task training set’s words-per-document statistics are in the table
below:

0% 1% 10% 50% 90% 99% 100%
unique tokens per doc 1 2 8 61 194 375 829

total tokens per doc 2 2 17 195 968 2721 11317

Public release: Unfortunately, due to privacy concerns this dataset cannot be made public. For
specific questions or concerns, please contact the first author via email: mike@michaelchughes.
com.
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C Details of Experimental Protocol

We outline several key decisions used in the experimental protocol. For full scripts necessary to
reproduce our analyses, see our public code base online:

https://github.com/dtak/prediction-constrained-topic-models/

Duration. Methods were allowed to run for 5000 complete passes through the dataset, or up to 48
hours, whichever came first.

Initialization. For non-toy datasets, we consider two possible ways to initialize topics φ.

First, we construct a “from scratch” random initialization which draws all topics from low-variance
random noise so no initial topic is too extreme yet symmetry breaking occurs. This initialization was
used by all inference methods.

Second, we initialize to the learned topics produced by the Gibbs sampler for unsupervised LDA,
taking the best scoring model snapshot on the validation set according to the score function outlined
in the main paper. This was only used by our PC methods, but could easily be used by all other
methods.

Batch sizes. We used different batch sizes for different data sets, as they were of different sizes and
analysed on different computing architectures with different capabilities:

• Movie reviews: 1 batch (4004 docs / batch).

• Yelp: 20 batches ( 1157 docs / batch)

• Psychiatric EHR: 20 batches ( 1488 docs / batch).

Step sizes. PC-sLDA requires the choice of step size for the Adam gradient descent optimizer. We
grid search among values between 0.001 and 0.1. Generally, larger values are preferred.

BP-sLDA also requires a step size for its mirror descent algorithm. We grid search among values
between 0.001 and 0.1.

D Extended Results

D.1 Extended Results: 3x3 Bars

For the 3x3 bars task described in Fig. 1 of the main paper, we have several supplemental results.

Best parameter visualizations. First, we show extended visualizations of the final topic-word
parameters and corresponding regression weights learned for each training method in Fig. D.1

By scanning Fig. D.1, we can immediately see that PC λ ≥ 10 methods are the only ones which use
a dedicated topic (the last topic in the plot’s left-to-right order) to explain the top-left-corner signal
word.

Differences are due to fundamental differences in the objectives, not lucky initialization. Next,
in Fig. D.2 we examine the impact of various hand-designed initializations on the outcomes of
different training methods to show that the differences between the training methods are not due
to poor exploration of the optimization space, but are instead due to fundamental differences in the
preferred parameters of each objective.

Fig. D.2 considers two distinct initializations which give better discriminative performance: top row is
good discriminative but poor generative performance, bottom row is a balance of good discriminative
and good generative performance (a configuration which would be good under our PC objective).
We see that under both initializations, supposedly “supervised” methods like sLDA and MED-sLDA
which do not account for the fundamental asymmetry of predicting labels from data wander away
from these high-performing discriminative initializations. In contrast, our PC approach reaches the
ideal lower left corner (good data likelihood and good label predictions) in both cases.
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Method Linear Color Scale Log Color Scale

Gibbs LDA

-2.0 -1.6 -1.2 -0.8
0.0
0.1
0.2
0.3

-2.0 -1.6 -1.2 -0.8
0.0

0.003

0.03

0.3

MED sLDA

-2.0 -1.6 -1.2 -0.8
0.0
0.1
0.2
0.3

-2.0 -1.6 -1.2 -0.8
0.0

0.003

0.03

0.3

PC sLDA λ = 1

-2.0 -1.6 -1.2 -0.8
0.0
0.1
0.2
0.3

-2.0 -1.6 -1.2 -0.8
0.0

0.003

0.03

0.3

PC sLDA λ = 10

-8.6 -7.5 -5.9  259.7
0.0
0.1
0.2
0.3

-8.6 -7.5 -5.9  259.7
0.0

0.003

0.03

0.3

PC sLDA λ = 100

-15.4 -10.0 -6.3  376.3
0.0
0.1
0.2
0.3

-15.4 -10.0 -6.3  376.3
0.0

0.003

0.03

0.3

Power sLDA λ = 1

-2.1 -1.6 -1.2 -0.8
0.0
0.1
0.2
0.3

-2.1 -1.6 -1.2 -0.8
0.0

0.003

0.03

0.3

Power sLDA λ = 10

-188.2 -5.8 -4.5  133.9
0.0
0.1
0.2
0.3

-188.2 -5.8 -4.5  133.9
0.0

0.003

0.03

0.3

Power sLDA λ = 100

-216.7 -8.2 -6.9  156.8
0.0
0.1
0.2
0.3

-216.7 -8.2 -6.9  156.8
0.0

0.003

0.03

0.3

Fig. D.1: Extended results of parameter visualizations for the toy-bars task.
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Init. Name Initial Parameters Fitness Over Time

Good y|x
-6.3 -5.2 -4.9  166.4

0.20.30.40.5
log p(x| )

0.0

0.25

0.5

5.0
lo

g
p(

y|
)

train mode: |x, y

0.20.30.40.5
log p(x| )

predict mode: |x Gibbs_LDA
ML_sLDA  = 0
ML_sLDA  = 1
ML_sLDA  = 10
ML_sLDA  = 100
PC_sLDA  = 1
PC_sLDA  = 10
PC_sLDA  = 100
MED_LDA
BP_sLDA

Good PC
-3.9 -3.7 -3.1  285.0

0.2 0.3 0.4 0.5
log p(x| )

0.0

0.25

0.5

5.0

lo
g

p(
y|

)

train mode: |x, y

0.2 0.3 0.4 0.5
log p(x| )

predict mode: |x Gibbs_LDA
ML_sLDA  = 0
ML_sLDA  = 1
ML_sLDA  = 10
ML_sLDA  = 100
PC_sLDA  = 1
PC_sLDA  = 10
PC_sLDA  = 100
MED_LDA
BP_sLDA

Fig. D.2: Extended toy bars task results: Evolution of topics from fixed initializations. Crosses mark the location
of each method’s training run which minimizes its training objective. Top Row: We consider initial topic-word
parameters (left panel) designed to have good discriminative likelihood but terrible data likelihood. Right panel
shows the trace of each method’s location in the fitness landscape throughout training, using this “from good y|x”
initialization and running until convergence. We see all methods evolve away from the initial configuration, with
only PC methods with λ ≥ 10 reaching the ideal lower corner of the fitness space. Bottom Row: We consider
initial topic-word parameters (left panel) designed to have good scores under our PC objective. Right panel
shows the trace of each method’s location in the fitness landscape throughout training, using the “from good PC”
initialization and running until convergence. We see all methods but high-λ PC-sLDA wander away from the
initial configuration.
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D.2 Extended Results: Movies

We next show extended results of our semisupervised experiments on the Movies dataset. This is like
Fig. 2 from the main paper, but with additional K values across the full range K = 10, 25, 50, 100.
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Fig. D.3: Extended results on Movie task.

D.3 Extended Results: Yelp

We next show extended results of our semisupervised experiments on the Yelp dataset. This is like
Fig. 2 from the main paper, but with additional K values across the full range K = 10, 25, 50, 100.
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Fig. D.4: Extended results on Yelp task.
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D.4 Extended Results: Antidepressant task

Here, we show (as claimed in the main paper) that we can use our code to train a BP-sLDA model
(called “ourBPsLDA”), by setting the weight in front of our data likelihood to zero. The resulting
code, when run on the big cohort of major depression disorder (MDD) patients, rapidly escapes from
the Gibbs initialization and severely overfits, improving training loss at the expensive of heldout sets.
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Fig. D.5: Extended results of our implementation of BP-sLDA (which can accomodate multiple binary labels)
on the Antidepressant task.
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E Browseable Visualizations of Learned Topics

We have created browseable HTML visualizations of the trained topic-word parameters φ and
regression weights η for all datasets.

Simply point your favorite web browser to the links below to browse

• Movies K = 25

• Yelp K = 25

• Antidepressant K = 25

Once on these pages, you can click different links to explore different model sizes K and different
label prediction coefficients within the selected task.

Two possible views of the top words for each topic are available:

• Folders marked “rerank_word=0“ provide the classic view of a topic’s top-word list. Each
topic’s words are sorted by p(word|topic).

• Folders marked “rerank_word=1“ provide an alternative that identifies anchor words, that is,
words whose presence in a document most strongly signals to use that topic. In these plots,
each topic’s words are sorted by p(topic|word).

All HTML files for these visualizations are available as a .zip file for download if you’d like to browse
locally:

http://michaelchughes.com/public_html/aistats_topic_viz_html.zip
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