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Abstract

Applications of Bayesian nonparametric methods require learning and inference
algorithms which efficiently explore models of unbounded complexity. We de-
velop new Markov chain Monte Carlo methods for the beta process hidden
Markov model (BP-HMM), enabling discovery of shared activity patterns in large
video and motion capture databases. By introducing split-merge moves based on
sequential allocation, we allow large global changes in the shared feature struc-
ture. We also develop data-driven reversible jump moves which more reliably
discover rare or unique behaviors. Our proposals apply to any choice of conjugate
likelihood for observed data, and we show success with multinomial, Gaussian,
and autoregressive emission models. Together, these innovations allow tractable
analysis of hundreds of time series, where previous inference required clever ini-
tialization and lengthy burn-in periods for just six sequences.

1 Introduction

Bayesian nonparametric time series models, including various “infinite” Markov switching pro-
cesses [1, 2, 3], provide a promising modeling framework for complex sequential data. We focus
on the problem of discovering coherent, short-term activity patterns, or “behaviors”, shared among
related time series. For example, given collections of videos or human motion capture sequences,
our goal is to (i) identify a concise global library of behaviors that explain the observed motions,
(ii) annotate each sequence with the subset of behaviors used, and (iii) label each timestep with one
active behavior. The beta process hidden Markov model (BP-HMM) [4] offers a promising solution
to such problems, allowing an unbounded set of relevant behaviors to be learned from data.

Learning BP-HMMs from large datasets poses significant computational challenges. Fox et al. [4]
considered a dataset containing only six motion capture sequences and proposed a Markov chain
Monte Carlo (MCMC) method that required careful initialization and tens of thousands of burn-in it-
erations. Their sampler included innovations like block state sequence resampling [5] and marginal-
ization of some variables. However, like most MCMC samplers, their proposals only modified
small subsets of variables at each step. Additionally, the sampler relied on parameter proposals from
priors, leading to low acceptance rates for high-dimensional data. Alternative single-site MCMC
moves, such as those based on slice sampling [6, 7], can exhibit similarly slow mixing. Our goal
is to expose this pervasive issue with conventional MCMC, and develop new samplers that rapidly
explore the structural uncertainty inherent in Bayesian nonparametric models. While our focus is on
the BP-HMM, the technical innovations underlying our samplers are much more broadly applicable.

We make two complementary improvements to previous BP-HMM samplers [4]. First, we develop
split-merge moves which change many variables simultaneously, allowing rapid improvements in
the discovered behavior library. Our approach builds on previous work on restricted Gibbs propos-
als [8] and sequential allocation strategies [9], both of which were formulated for static Dirichlet
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Figure 1: Left: The BP-HMM as a directed graphical model. Right: Illustration of our split and merge
proposals, which modify both binary feature assignment matrices F (white indicates present feature) and state
sequences z. We show F, z before (top) and after (bottom) feature km (yellow) is split into ka, kb (red,orange).
An item i with fikm = 1 can have either ka, kb, or both after the split, and its new zi sequence can use any
features available in fi. An item without km cannot possess ka, kb, and its state sequence zi does not change.

process (DP) mixture models [10]. Second, we design data-driven [11] reversible jump moves [12]
which efficiently discover behaviors unique to a single sequence. These data-driven proposals are
especially important for high-dimensional observation sequences. Both innovations apply to any
likelihood model with a conjugate prior; we show success with multinomial models of discrete
video descriptors, and Gaussian autoregressive models of continuous motion capture trajectories.

We begin in Sec. 2 by reviewing the BP-HMM model. We describe previous BP-HMM samplers [4]
in Sec. 3.1, and then develop our novel split-merge and data-driven proposals in Sec. 3.3-3.4. We
evaluate our contributions in Sec. 4, showing improvements over prior work modeling human mo-
tions captured both via a marker-based mocap system [4] and video cameras [13].

2 Beta Process Hidden Markov Models

Latent feature models intuitively capture the sparse sharing patterns occurring in collections of
human action sequences. For example, one sequence may contain jogging and boxing, while another
has jogging and dancing. We assign the ith sequence or “item” with a sparse binary vector fi =
[fi1, fi2, . . .] indicating the presence or absence of each feature in the unbounded global collection.
Given N items, corpus-wide assignments are denoted by a binary matrix F whose ith row is fi.1

The feature matrix F is generated by an underlying stochastic process, the beta process (BP) [14]:

B | B0, γ, β ∼ BP(β, γB0), B =

∞∑
k=1

bkδθk . (1)

A realization B of the BP contains infinitely many features k. For each feature, θk ∼ B0 marks its
data-generation parameters, while bk ∈ (0, 1) denotes its inclusion probability. The binary feature
vector for item i is determined by independent Bernoulli draws fik ∼ Ber(bk). Marginalizing over
B, the number of active features in item i has distribution Poisson(γ), determined by mass param-
eter γ. The concentration parameter β controls how often features are shared between items [15].

To apply feature models to time series data, Fox et al. [4] combine the BP with a hidden Markov
model to form the BP-HMM, shown in Fig. 1. The binary vector fi determines a finite set of states
available for item i. Each timestep t is assigned a single state zit = k from the set {k : fik = 1},
determining which parameters θk generate data xit. Many different data-generation models are
possible. As in [4], for motion capture data we use a first-order Gaussian autoregressive process
with parameters θk = (Ak,Σk) drawn from a matrix-normal inverse-Wishart conjugate prior

xit | zit = k, xit−1 ∼ N (Akxit−1,Σk) Ak,Σk | B0 ∼MNW−1(ν, S0, R0) (2)
To study video, we use a Dirichlet-multinomial model for quantized interest point descriptors [13]

xit | zit = k ∼ Multinomial(θk) θk | B0 ∼ Dirichlet(λ0, λ0, . . . λ0) (3)

1Throughout this paper, for variables wijk we use w to denote the vector or collection of wijk’s over the
entire set of subscripts, and wi for the collection over only the omitted subscripts j and k
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The BP-HMM allows each item independent transition dynamics. The transition distribution πij
from each state j for the HMM of item i is built by drawing a set of transition weights ηi, and then
normalizing these over the set of active features fi:

ηijk ∼ Gamma(α+ κδjk, 1), πijk =
ηijkfik∑
` fi`ηij`

. (4)

Here, δjk = 1 if j = k, and 0 otherwise. This construction assigns positive transition mass πijk only
to features k active in fi. The sticky parameter κ places extra expected mass on self-transitions [3],
biasing the model to learn state sequences z with temporally persistent states.

3 MCMC Inference with Split-Merge Proposals

We first summarize the MCMC methods previously proposed for the BP-HMM [4]. We then present
our novel contributions: split-merge moves and data-driven reversible jump proposals. Full algo-
rithmic details for all samplers are found in the supplement, and our code is available online.

3.1 Local Monte Carlo Proposals

Fox et al. [4]’s sampler alternates updates to HMM parameters θ and η, discrete state sequences z,
and feature assignments F. Fixing F defines a collection of finite HMMs, so each zi can be block
sampled by dynamic programming [5], and then θ, η drawn from conjugate posteriors.2 Sampling
each item’s features requires separate updates to features shared with some other time series and
features unique to item i. Both updates marginalize state sequences z and inclusion weights b.

For each shared feature k, Fox et al. propose flipping fik to the complementary binary value and
accept or reject according to the Metropolis-Hastings (MH) rule. This local move alters only one
entry in F while holding all others fixed; the split-merge moves of Sec. 3.3 improve upon it.

For unique features, Fox et al. [4] define a reversible pair of birth and death moves which add or
delete features to single sequences. While this approach elegantly avoids approximating the infinite
BP-HMM, their birth proposals use the (typically vague) prior to propose emission parameters θk∗
for new features k∗. We remedy this slow exploration with data-driven proposals in Sec. 3.4.

3.2 Split-Merge Proposals for Dirichlet Process Models

Split-merge MCMC methods were first applied to nonparametric models by Jain and Neal [8] in
work focusing on DP mixture models with conjugate likelihoods. Conjugacy allows samplers to
operate directly on discrete partitions of observations into clusters, marginalizing emission parame-
ters. Jain and Neal present valid proposals that reversibly split a single cluster km into two (ka, kb),
or merge two clusters into one. Since merges are deterministic, the primary contribution of [8] is a
generic technique – restricted Gibbs (RG) sampling – for proposing splits consistent with the data.

To construct an initial split of km, the RG sampler first assigns items in cluster km at random to either
ka or kb. Starting from this partition, the proposal is constructed by performing one-at-a-time Gibbs
updates, forgetting an item’s current cluster and reassigning to either ka or kb conditioned on the
remaining partitioned data. After several sweeps, these Gibbs updates encourage proposed clusters
ka and kb which agree with the data and thus are more likely to be accepted. For non-conjugate
models, more complex RG proposals can be constructed which instantiate emission parameters [16].

Even in small datasets, there can be significant benefits from performing five or more sweeps for
each RG proposal [8]. For large datasets, however, requiring many sweeps for a single proposal
is computationally expensive. An alternative sequential allocation [9] method replaces the random
initialization of RG by using two randomly chosen items to “anchor” the two new clusters ka, kb.
Remaining items are then sequentially assigned to either ka or kb one-at-a-time, using RG moves
conditioning only on previously assigned data. This creates a proposed partition in agreement with
the data after only one sampling sweep. Recent work has shown some success with sequentially-
allocated split-merge moves for a hierarchical DP topic model [17].

2Fox et al. [4] contains a small error in the resampling of η, as detailed and corrected in the supplement.
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For nonparametric models not based on the DP, split-merge moves are not well studied. Several
authors have considered RG split-merge proposals for beta process models [18, 19, 20]. However,
these papers lack technical details, and do not contain experiments showing improved mixing.

3.3 Split-Merge Proposals for the BP-HMM

We now adapt RG and sequential allocation to define BP-HMM split-merge moves. In the mixture
models considered by prior work [8, 9], each data item i is associated with a single cluster ki,
so selecting two anchors i, j also identifies two cluster indices ki, kj . However, in feature-based
models such as the BP-HMM, each data item i is associated with a collection of features indexed by
fi. Therefore, our proposals require mechanisms for selecting anchors and for choosing candidate
states to split or merge from fi, fj . Additionally, our proposals must allow changes to state sequences
z to reflect changes in F. Our proposals thus jointly create a new configuration (F∗, z∗), collapsing
away HMM parameters θ, η. Fig. 1 illustrates (F, z) before and after a split move.

Selecting Anchors Following [9], we first randomly select distinct anchor data items i and j. The
fixed choice of i, j defines a split-merge transition kernel satisfying detailed balance. Next, we select
from each anchor one feature it possesses, denoted ki, kj . This choice determines the proposed
move: we merge ki, kj if they are distinct, and split ki = kj into two new features otherwise.

Selecting ki, kj uniformly at random is problematic. First, in datasets with many features choosing
ki = kj is unlikely, making split moves rare. We need to bias the selection process to propose splits
more often. Second, in a well-trained model most feature pairs will not make a sensible merge.
Selecting a pair that explains similar data is crucial for efficiency. We thus develop a proposal
distribution which first draws ki uniformly from fi, and then selects kj given fixed ki as follows:

qk(ki, kj) = Unif(ki | fi)q(kj | ki, fj), q(kj = k | ki, fj) ∝

{
2Cjfjk if k = ki

fjk
m(xki

,xk)

m(xki
)m(xk)

o.w.
(5)

Here, xk is the data assigned to k, m(·) denotes the marginal likelihood of data collapsing away
emission parameters θ, and Cj =

∑
kj 6=ki fjkjm(xki ,xkj )/

[
m(xki)m(xkj )

]
. This construction

gives large mass (2/3) to a split move when possible, and also encourages choices ki 6= kj for a
merge that explain similar data via the marginal likelihood ratio. A large ratio means the model
prefers to explain all data assigned to ki, kj together rather than separately, biasing selection to-
wards promising merge candidates. We find higher acceptance rates for merges under this qk, which
justifies the small cost of computing m(·) from cached sufficient statistics.

Once ki, kj are fixed, we construct the candidate state F∗, z∗. As shown in Fig. 1, we only alter
f`, z` for items ` which possess either ki or kj . We call this set of items the active set S.

Split Our split proposal is defined in Alg. 1. Sweeping through a random permutation of items
` in the active set S , we draw each item’s assignment to new features ka, kb and resample its state
sequence. We sample [f∗`kaf

∗
`kb

] from its conditional posterior given previously visited items in
S, requiring that ` must possess at least one of the new features. We then block sample its state
sequence z∗` given f∗` . The dynamic programming recursions underlying these proposals use non-
random auxiliary parameters: η̂` is set to its prior mean, and θ̂k to its posterior mean given the current
z. For new states k∗ ∈ {ka, kb}, we initialize θ̂k∗ from anchor sequences and then update to account
for new data assigned to k∗ at each item `. This enables better matching of proposed features to data
statistics. Finally, we sample f∗, z∗ for anchor items, enforcing f∗ika = 1 and f∗jkb = 1 so the move
remains reversible under a merge. This does not force z∗i to use ka nor z∗j to use kb.

Merge For a merge move, constructing F∗ is deterministic: we set f∗`km = 1 for ` ∈ S, and 0
otherwise. We thus need only to sample z∗` for items in S, using a block sampler as in Alg. 1. Again
this requires auxiliary HMM parameters θ̂, η̂, which we emphasize are deterministic tools enabling
collapsed proposals of discrete indicators F∗, z∗. We never sample θ, η.

Accept-Reject After drawing a candidate value F∗, z∗, the final step is to compute a Metropolis-
Hastings acceptance probability min(ρ, 1). We give the ratio for a split move which creates features
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Alg. 1 Propose split of feature km into ka, kb given F, z,x, anchor items i, j, set S={`:f`,km=1}
1: fi,[ka,kb] ← [1 0] zi,t:zi,t=km ← ka use anchor i to create ka
2: fj,[ka,kb] ← [0 1] zj,t:zj,t=km ← kb use anchor j to create kb
3: θ̂ ← E [θ | x, z, λ] η̂` ← E [η` | α, κ], ` ∈ S set HMM params deterministically
4: Sprev = {i, j} initialize set of previously visited items
5: for non-anchor items ` in random permutation of active set S:

6: f`,[kakb] ∼


[0 1]
[1 0] ∝ p(f`,[kakb] | fSprev,[kakb])p(x` | f`, θ̂, η̂`)
[1 1]

7: z` ∼ p(z` | x`, f`, θ̂, η̂`) draw f, z and update θ̂ for each item
8: add ` to Sprev condition on previously visited items
9: for k = ka, kb : θ̂k ← E [θk | λ, {xnt : znt = k, n ∈ Sprev}]

10: fi,[kakb] ∼
{

[1 0]
[1 1]

fj,[kakb] ∼
{

[0 1]
[1 1]

finish by sampling f, z for anchors

11: zi ∼ p(zi | xi, fi, θ̂, η̂i ) zj ∼ p(zj | xj , fj , θ̂, η̂j )

ka, kb from km below. The acceptance ratio for a merge move is the reciprocal of Eq. (6).

ρsplit =
p(x, z∗,F∗)

p(x, z,F)

qmerge(F, z | x,F∗, z∗, ka, kb)
qsplit(F∗, z∗ | x,F, z, km)

qk(ka, kb | x,F∗, z∗, i, j)
qk(km, km | x,F, z, i, j)

(6)

The joint probability p(x, z,F) is only tractable with conjugate likelihoods. Proposals which instan-
tiate emission parameters θ, as in [16], would be required in the non-conjugate case.

3.4 Data-Driven Reversible Jump Birth and Death Proposals

Efficiently adding or deleting unique features is crucial for good mixing. To accept the birth of new
feature k∗ = K+1 for item i, this feature must explain some of the observed data xi at least as well
as existing features 1, 2, . . .K. High-dimensional emission parameters θk∗ drawn from a vague prior
are unlikely to match the data at hand. Instead, we suggest a data-driven proposal [11, 13] for θk∗ .
First, select at random a subwindow W of the current sequence i. Next, use data in this subwindow
xW = {xit : t ∈ W} to create a proposal distribution: qθ(θ) = 1

2p(θ) + 1
2p(θ | xW ), which is

a mixture of θ’s prior and posterior given xW . This mixture strikes a balance between proposing
promising new features (via the posterior) while also making death moves possible, since the diffuse
prior will place some mass on the reverse birth move.

Let Ui denote the number of unique features in fi and ν = γ β
N−1+β . The acceptance probability for

a birth move to candidate state f∗i , η
∗
i , θ
∗ is then min(ρbirth, 1), where

ρbirth =
p(xi | f∗i , η∗i , θ∗)
p(xi | fi, ηi, θ)

Poi(Ui + 1 | ν)

Poi(Ui | ν)

pθ(θ
∗
k∗)

qθ(θ∗k∗)

qf (fi | f∗i )

qf (f∗i | fi)
(7)

Eq. (7) is similar to the ratio for the birth proposal from the prior, adding only one term to account
for the proposed θ∗k∗ . Note that each choice ofW defines a valid pair of birth-death moves satisfying
detailed balance, so we need not account for this choice in the acceptance ratio [21].

4 Experimental Results

Our experiments compare competing inference algorithms for the BP-HMM; for comparisons to
alternative models, see [4]. To evaluate how well our novel moves explore the posterior distribu-
tion, we compare three possible methods for adding or removing features: split-merge moves (SM,
Sec. 3.3), data-driven moves (DD, Sec. 3.4), and reversible jump moves using the prior (Prior [4],
Sec. 3.1). All experiments interleave the chosen update with the standard MH updates to shared
features of F and Gibbs updates to HMM parameters θ, η described in Sec. 3.1.

For each comparison, we run multiple initializations and rank the chains from “best” to “worst”
according to joint probability. Each chain is allowed the same amount of computer time.
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Figure 2: Feature creation for synthetic data with Gaussian (left), AR (middle), or multinomial (right) likeli-
hoods. Each run begins with one feature used by all items, and must add new features via split-merge proposals
(SM), or reversible-jump moves using data-driven (DD) or prior (Prior) proposals. Top: Log joint probability
versus computation time, for 10 random initializations of each sampling algorithm. Bottom: Emission pa-
rameters associated with the last sample after one hour of computation time. Gaussian θ = (µ,Σ) and AR
θ = (A,Σ) shown as contour lines in first two dimensions, with location determined by µ,A. Multinomial θ
shown as image where row k gives the emission distribution over vocabulary symbols for state k.

4.1 Synthetic Data

We examined toy datasets generated by a known set of 8 features (behaviors) θtrue. To validate
that our contributions apply for many choices of likelihood, we create three datasets: multinomial
“bag-of-words“ emissions using 500 vocabulary words, 8–dimensional Gaussian emissions, and a
first-order autoregressive (AR) processes with 5 dimensions. Each dataset has N = 100 sequences.

First, we study how well each method creates necessary features from scratch. We initialize the
sampler with just one feature used by all items, and examine how many true states are recovered
after one hour of computation time across 10 runs. We show trace plots as well as illustrations of
recovered emission parameters θ in Fig. 2. All runs of both SM and DD moves find all true states
within several minutes, while no Prior run recovers all true states, remaining stuck with merged
versions of true features. DD moves add new features most rapidly due to low computational cost.

We next examine whether each inference method can remove unnecessary features. We consider a
different toy dataset of several hundred sequences and a redundant initialization in which 2 copies
of each true state exist. Half of the sequences are initialized with f , z set to corresponding true
values in copy 1, and the second half using copy 2. Using Gaussian and AR likelihoods, all SM runs
merge down to the 8 true states, at best within five minutes, but no DD or Prior run ever reaches
this optimal configuration in the allotted hour. Merge moves enable critical global changes, while
the one-at-a-time updates of [4] (and our DD variant) must take long random walks to completely
delete a popular feature. Further details are provided in the supplementary material.

These results demonstrate the importance of DD birth and split moves for exploring new features,
and merge moves for removing features via proposals of large assignment changes. As such, we
consider a sampler that interleaves SM and DD moves in our subsequent analyses.

4.2 Motion Capture Data

We next apply our improved MCMC methods to motion capture (mocap) sequences from the CMU
database [22]. First, we consider the small dataset examined by [4]: 6 sequences of physical ex-
ercises with motion measurements at 12 joint angles, modeled with an AR(1) likelihood. Human
annotation identifies 12 actions, which we take as ground truth. Previous results [4] show that the
BP-HMM outperforms competitors in segmenting these actions, although they report that some true
actions like jogging are split across multiple recovered features (see their Fig. 5). We set likelihood
hyperparameters similarly to [4], with further details provided in the supplement.
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Figure 3: Analysis of 6 motion capture sequences previously considered by [4]. Left: Joint log probability
and Hamming distance (from manually annotated behaviors) for 20 runs of each method over 10 hours. Right:
Examples of arm circles and jogging from 3 sequences, along with estimated zi of last sample from the best
run of each method. SM+DD moves (top row started from one feature, middle row started with 5 unique
states per sequence) successfully explain each action with one primary state, while [4]’s sampler (bottom row)
started from 5 unique features remains stuck with multiple unique states for one true action.

Ballet Walk Squat Sword Lambada

Dribble Basketball Box Climb Indian Dance Tai Chi

Figure 4: Analysis of 124 mocap sequences, showing 10 of 33 recovered behaviors. Skeleton trajectories are
built from contiguous segments ≥ 1 sec long assigned to each behavior. Boxed groups contain segments from
distinct sequences assigned to the same state. Some states only appear in one sequence.

In Fig. 3, we compare a sampler which interleaves SM and DD moves with [4]’s original method.
We run 20 chains of each method for ten hours from two initializations: unique5, which assigns
5 unique features per sequence (as done in [4]), and one, using a single feature across all items.
In both log probability and Hamming distance, SM+DD methods are noticeably superior. Most
interestingly, SM+DD starting from a parsimonious one feature achieves best performance overall,
showing that clever initialization is not necessary with our algorithm. The best run of SM+DD from
one achieves Hamming distance of 0.22, compared to 0.3 reported in [4]. No Prior proposal run
from one created any additional states, indicating the importance of using our improved methods
of feature exploration even in moderate dimensions.

Our SM moves are critical for effectively creating and deleting features. Example segmentations of
arm-circles and jogging actions in Fig. 3 show that SM+DD consistently use one dominant behavior
across all segments where the action appears. In contrast, the Prior remains stuck with some unique
behaviors used in different sequences, yielding lower probability and larger Hamming distance.

Next, we study a larger dataset of 124 sequences, all “Physical Activities & Sports” examples from
the CMU mocap dataset. Analyzing a dataset of this size is computationally infeasible using the
methods of [4]. Initializing from unique5would create over 500 features, requiring a prohibitively
long sampling run to merge related behaviors. When initialized from one, the Prior sampler creates
no additional features. In contrast, starting from one, our SM+DD moves rapidly identify a diverse
set of 33 behaviors. A set of 10 behaviors representative of this dataset are shown in Fig. 4. Our
improved algorithm robustly explores the posterior space, enabling this large-scale analysis.

4.3 CMU Kitchen: Activity Discovery from Video

Finally, we apply our new inference methods to discover common motion patterns from videos of
recipe preparation in the CMU Kitchen dataset [23]. Each video is several minutes long and depicts
a single actor in the same kitchen preparing either a pizza, a sandwich, a salad, brownies, or eggs.
Our previous work [13] showed promising results in activity discovery with the BP-HMM using a
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Figure 5: Activity discovery with 126 Kitchen videos, showing locations of select behaviors over time. Each
row summarizes zi for a single video, labeled at left by recipe type (label not provided to the BP-HMM). We
show only behaviors assigned to at least two timesteps in a local window.

small collection of 30 videos from this collection. We compare our new SM moves on this small
dataset, and then study a larger set of 126 Kitchen videos using our improved sampler.

Using only the 30 video subset, Fig. 6 compares the combined SM+DD sampler with just DD or
Prior moves, using fixed hyperparameter settings as in [13] and starting with just one feature. DD
proposals offer significant gains over the prior, and further interleaving DD and SM moves achieves
the best overall configuration, showing the benefits of proposing global changes to F, z.
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Figure 6: Joint log probability versus
computation time for various samplers
on the CMU Kitchen data [23] previ-
ously studied by [13].

Finally, we run the SM+DD sampler on 126 Kitchen se-
quences, choosing the best of 4 chains after several days
of computer time (trace plots show convergence in half this
time). Fig. 5 maps behavior assignments over time across all
five recipes, using the last MCMC sample. Several intuitive
behavior sharing patterns exist: chopping happens with car-
rots (salad) and pepperoni (pizza), while stirring occurs when
preparing brownies and eggs. Non-uniform behavior usage
patterns within a category are due to differences in available
cooking equipment across videos. Please see the supplement
for more experimental details and results.

5 Discussion

We have developed efficient MCMC inference methods for the BP-HMM. Our proposals do not re-
quire careful initialization or parameter tuning, and enable exploration of large datasets intractable
under previous methods. Our approach makes efficient use of data and applies to any choice of con-
jugate emission model. We expect the guiding principles of data-driven and sequentially-allocated
proposals to apply to many other models, enabling new applications of nonparametric analysis.
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