
Supplementary Material:

Memoized Online Variational Inference for

Dirichlet Process Mixture Models

Michael C. Hughes and Erik B. Sudderth
Department of Computer Science, Brown University, Providence, RI 02912

mhughes@cs.brown.edu, sudderth@cs.brown.edu

Abstract

This document contains supplementary mathematics and algorithm descriptions
to help readers understand our new learning algorithm. First, in Sec. 1 we offer
detailed model description and update equations for a DP-GMM with zero-mean,
full-covariance Gaussian likelihood. Second, in Sec. 2 we provide step-by-step
discussion of our birth move algorithm, providing a level-of-detail at which the
interested reader could implement our approach.

1 DP mixtures with zero-mean Gaussian observations

To review, consider the generic DP mixture model defined in the main text.

G ∼ DP(α0H), G ,

∞
∑

k=1

wkδφk
, vk ∼ Beta(1, α0), wk = vk

k−1
∏

ℓ=1

(1 − vℓ). (1)

This process produces mixture weights wk from a stick-breaking process and data-generating pa-
rameters φk from base measure H . Each data item n chooses an assignment zn ∼ Cat(w), and then
draws observations xn ∼ F (φzn). We assume both H and F belong to exponential families

p(φk | λ0) = exp
{

λT0 t0(φk)− a0(λ0)
}

, p(xn | φk) = exp
{

φTk t(xn)− a(φk)
}

. (2)

We now make this process concrete, providing the complete model and variational approximation for
the particular case where observed data consists of a length-D column vector xn and the observation
model F (x|φk) is zero-mean Gaussian.

1.1 Zero-mean Gaussian Observation Model F (x|φk)

For the Gaussian case, we parameterize the Gaussian likelihood F (x|φk) for component k by a D-
length mean vector µk and a D × D symmetric, positive definite precision matrix Λk. Let φk =
(µk,Λk). For the zero-mean likelihood, we assume µk = 0 for all k. This leaves only precision
matrix Λk as a parameter of interest. The likelihood of xn when assigned to component k is

p(xn|zn = k) = Normal(xn|0,Λ
−1
k) (3)

log p(xn|zn = k) = −
D

2
log[2π] +

1

2
log |Λk| −

1

2
xTnΛkxn (4)

= −
D

2
log[2π] +

1

2
log |Λk| −

1

2
tr(Λkxnx

T
n) (5)

where |P | represents the determinant of a square matrix P .

1

Writing the quadratic form in terms of the trace function tr(·), which is a linear function, makes it
clear that this distribution belongs to the exponential family, with sufficient statistic t(xn) = xnx

T
n .

This follows from the identity tr(AB) = vec(A)T vec(B), where vec(·) vectorizes a Q ×R matrix
into a column vector of length Q ·R.

1.2 Wishart base measure H(φk)

The conjugate base measureH(φk|λ0) for this likelihood is the Wishart distribution. The parameters
are λ0 = ν,W , where ν is a scalar degrees-of-freedom satisfying ν ≥ D, and W is a D × D
symmetric, positive definite matrix.

p(Λk|ν,W) = Wish(ν,W) (6)

log p(Λk|ν,W) = − logZ(ν,W) +
ν −D − 1

2
log |Λk| −

1

2
tr(W−1Λk) (7)

logZ(ν,W) =
νD

2
log 2 + log ΓD

(ν

2

)

−
ν

2
log

∣

∣

∣
W−1

∣

∣

∣
(8)

whereΓD(a) is the multivariate Gamma function, defined as ΓD(a) = πD(D−1)/4
∏D

d=1 Γ(a+
1−d
2)

1.3 Variational Approximation

To approximate the full (but intractable) posterior over variables z, v, φ, we consider a fully-
factorized variational distribution q, with individual factors from appropriate exponential families:

q(z, v, φ) =
N
∏

n=1

q(zn|r̂n)
K
∏

k=1

q(vk|α̂1, α̂0)q(φk|λ̂k), (9)

q(zn) = Cat(zn | r̂n1, . . . r̂nK), q(vk) = Beta(vk | α̂k1, α̂k0), q(φk) = H(φk | λ̂k). (10)

Local assignments q(zn) The posterior over assignments for each item n – p(zn|xn, φ, v) – is
approximated by a discrete distribution overK components. Although the model allows assignment
to an unbounded set, we enforce truncation q(zn > K) = 0 to make inference tractable.

Parameters r̂n1 . . . r̂nK for each q(zn) must be non-negative and sum-to-one. Each r̂nk is interpreted
as the fraction of posterior responsibility that component k has for xn. Update equations are:

q(zn) = Cat(r̂n1, r̂n2, . . . r̂nK) (11)

r̃nk = exp
(

Eq[logwk(v)] + Eq[log p(xn | φk)]
)

, r̂nk =
r̃nk

∑K
ℓ=1 r̃nℓ

. (12)

Given estimates r̂n for the whole dataset, we compute sufficient statistics for component k:

N̂k , Eq

[

N
∑

n=1

znk

]

=

N
∑

n=1

r̂nk, sk(x) , Eq

[

N
∑

n=1

znkt(xn)
]

=

N
∑

n=1

r̂nkxnx
T
n , (13)

Global stick-breaking parameters q(v) Each stick-breaking fraction vk is given an independent
variational factor q(vk), with update equations

q(vk) = Beta(α̂k1, α̂k0), α̂k1 = 1 + N̂k, α̂k0 = α0 +

K
∑

ℓ=k+1

N̂ℓ (14)

Given α̂k1, α̂k0 for all components, we may compute expected log mixture weights

Eq[log vk] = ψ(α̂k1)− ψ(α̂k1 + α̂k0) Eq[log 1− vk] = ψ(α̂k0)− ψ(α̂k1 + α̂k0) (15)

Eq

[

logwk(v)
]

= Eq[log vk] +

k−1
∑

ℓ=1

Eq[log 1− vℓ] (16)

where ψ(a) is the digamma function, the first derivative of log Γ(a).

2

Global data-generation parameters We define a separate factor for each component’s data-
generating parameters q(Λk), to approximate the posterior p(Λk|x, z, . . .). Each factor is Wishart

with parameters ν̂k, Ŵk, updated as follows

q(Λk) = Wishart(Λk|ν̂k, Ŵk) (17)

ν̂k = ν + N̂k, Ŵ−1
k =W−1 + sk(x) (18)

Given ν̂k, Ŵ
−1
k , we compute the expected log probability under component k for each data item xn

Eq

[

log p(xn|φk)
]

= −
D

2
log[2π] +

1

2
Eq

[

log |Λk|
]

−
1

2
tr(Eq[Λk]xnx

T
n) (19)

Here, we use basic expectations under the Wishart distribution:

Eq[Λk] = ν̂kŴk, Eq[log |Λk|] = ψD

(ν̂k

2

)

+D log 2 + log |Ŵk| (20)

where ψD(a) =
∑D

d=1 ψ(a+
1−d
2) is the multivariate digamma function of dimension D.

2 Birth Moves for Mixture Models

Overview. As input, our birth procedure takes an existing variational model q withK components,
together with global sufficient statistics S0 = [S0

1 S
0
2 . . . S0

K] for the full dataset x. The algorithm
consists of 3 steps: collection of a subsample dataset x′, creation of brand-new components by a
fresh DP mixture model variational analysis of x′, and adoption of these fresh new components by
the full dataset x. The output will be an expanded model q∗ with K + J ′ components.

2.1 Collection of the target dataset x′

We find it simplest to focus on a birth move which targets a specific component k′. After select-
ing the component k′, the birth move proceeds to subsample data x

′ associated with k′, using the
existing local assignment factors q(zn) to identify which data items to subsample. Certainly other
ways of subsampling exist, but this has an intuitive interpretation as targeting a single sub-optimal
component which may be too coarse (explaining multiple ideal subclusters) and refining it.

Selecting the target component k′. The procedure for selecting which component k′ to target
is not complicated. For understanding the mechanics of birth moves, it is fine to simply select the
component k′ uniformly at random. If we have K active components in original model q, then

k′ ∼ Unif({1, 2, . . .K}) (21)

Many other schemes for choosing k′ can be considered. But the above is perfectly sufficient, albeit
potentially slow at trying a diverse set of possible moves in a short timespan.

In practice, we recommend sampling k′ at random, but in a way that biases towards choosing com-

ponents that (1) have more mass and (2) have not been targeted in the last few moves. Let N̂0
k give

the current expected count on the full dataset, and Lk denote the number of passes through the data
since component k was last chosen for a birth move.

p(k′ = k) ∝ (N̂0
k) ∗ (Lk)

2 (22)

Squaring the Lk term forces the algorithm to not wait very long between trying all possible compo-
nents, ensuring good coverage of the space of all possible moves. We found that this revised selec-
tion procedure improved the speed with which our algorithm recovered all missing components, but
uniform selection should eventually reach the same high-quality configurations.

Sampling a dataset targeted on component k′. After selecting k′, next we collect a targeted
dataset x′ with size at most N ′. We recommend choosing N ′ large enough that necessary “undis-
covered” components (not in the existing set {1, 2, . . .K} can be learned, but still small enough that
running many batch VB iterations does not take more than a few seconds. We found N ′ = 10000

3

to be a good choice for our experiments using Gaussian likelihoods with dimension D = 25 to
D = 50. For small values like D = 2, N ′ in the low hundreds may be sufficient.

The target dataset x′ contains samples without replacement from the full dataset x (of size N). For
each observed vector xn ∈ x, we add it to our subsample x′ if the following test is true:

r̂nk′ > τ, with typical value τ = 0.1 (23)

Here, r̂nk′ is interpreted as the posterior responsibility of component k′ for data item n. Each
observation n has a vector [r̂n1 r̂n2 · · · r̂nK] of these responsibilities, where each entry is non-
negative and the whole vector sums to one. The value r̂nk′ ∈ [0, 1] will be larger than the threshold
τ if the n-th observation is well-explained by component k′.

Intuitively, our simple “threshold” test for adding data to the targeted dataset x′ ensures that the
subsample contains data which are significantly explained by component k′, while also promoting
diversity (since members could also be partially explained by some other component). The threshold
of 0.1 strikes a good balance between these competing goals. We did explore a few other values for
τ among {0.2, 0.5} in preliminary experiments, and found that τ = 0.1 performed slightly better.
We stress that this does not need to be fine-tuned for the particular dataset at hand: the same setting
was used for all our experiments.

In practice collection is done by visiting each batch in turn, and collecting all relevant data items
until the size of x′ exceeds the limit N ′. When batch traversal order is randomized at each pass
through the data, this has the beneficial effect of randomizing the subsample.

2.2 Creating an expanded model with brand-new components from the targeted dataset

Next, we consider adding new components to our existing model. We first train a fresh DP mixture
model withK ′ brand-new components on x

′ via conventional (batch) variational inference, and then
later combine these components with the existing K component model.

The process of creating components by a fresh variational analysis is general and elegant. This strat-
egy applies to any DP mixture with exponential family likelihoods, re-uses existing code routines
needed for the larger learning algorithm, and has a pleasing interpretation as a “divide-and-conquer”
strategy. That is, to find the ideal clustering for the large dataset x, we simply need to repeatedly
find some broadly related subset x′ and perform a more fine-grained clustering of that subset.

Creation of new components. Given the target dataset x′ as a stand-alone dataset for analysis, we
perform one run of standard full-dataset variational inference. We fit a K ′-component DP mixture
model with exactly the same prior parameters as the original model.

In practice, we initialize by setting fixed-truncation K ′ = 10, which is a reasonable compromise
between diversity and speed. To initialize, we select K ′ observations (uniformly at random) from
x
′ to seed parameters. We run only for a fixed budget of I ′ = 100 iterations or until convergence of

the objective, whichever happens first.

The choices of truncation levelK ′, initialization routine, and number of iterations I ′ may all impact
the performance of the birth move. We found the same settings lead to reasonable performance
across all tested datasets. In general, a more intelligent initialization is better. Running for longer
will produce more refined components, but at the cost of increased run-time.

After the run, instead of saving estimated parameters we save summaries for each new component:

N̂ ′ = [N̂1 N̂2 · · · N̂K′] (24)

s(x′) = [s1(x
′) s2(x

′) · · · sK′(x′)] (25)

In general, some final components may have very few assignments to data x
′. Some may be empty

or nearly-empty. We thus post-process results to remove components j which have low expected

counts N̂j for explaining the data x
′. Pruning out empty components makes later phases much

faster without sacrificing quality.

Specifically, we remove component j if N̂j < ǫN ′, and we set ǫ = 1
20 . After this removal, we end

up with a set of J ′ sufficient statistics {N̂j, sj(x
′)}J

′

j=1, where J ′ ≤ K ′. These sufficient statistics
are all we pass along to the next step.

4

If only J ′ = 1 component is left, by construction its summary will be very close to the summary for
the target component k′. We shouldn’t expect adding this new component will improve the original
model (since k′ already exists unchanged). Thus, if the resulting number of components is J ′ = 1,
we abort the birth process early and return to the original K component model.

Creation of combined model Here, we combine the K components from the existing model with
the brand-new J ′ components. Working purely in terms of sufficient statistics, we find that it is easy

to build a coherent combined model simply by concatenating the fresh components S′ = [N̂ ′ s(x′)]

onto the existing global sufficient statistics S0 = [N̂ s(x)].

We now have an expanded model with K + J ′ summaries, S∗ = [N̂∗s∗]:

N̂∗ = [N̂1 N̂2 · · · N̂K N̂ ′

K+1 N̂
′

K+2 · · · N̂ ′

K+J′] (26)

s∗ = [s1(x) s2(x) · · · sK(x) sK+1(x
′) sK+2(x

′) · · · sK+J′(x′)] (27)

This concatenation creates a valid set of sufficient statistics for an “expanded” dataset formed by
the union of x and x

′. This set “double-counts” the subsample x
′, assigning these data items to

both original components (mostly k′) and new components K + 1, . . .K + J”. In the next phase
(adoption), we pass through the entire dataset, and discover which interpretation (original or new
components) is preferred by the model.

Using new, expanded sufficient statistics S∗, we can then expand both local and global factors. The
resulting expanded model q∗ remains valid due to our nested truncation of the variational posterior.
At this stage, no local parameters have been assigned to the new components. For all n, we simply
expand q∗(zn) to be a discrete distribution over K + J ′ components, where only the first K have
mass:

Before: q(zn) = Cat(r̂n1, . . . r̂nK) (28)

After: q∗(zn) = Cat(r̂n1, . . . r̂nK , 0, 0, . . .0) (29)

Crucially, all parameters r̂nk are directly transfered from the previous model q, and no batches
actually need to be visited at this stage (they can instead be lazily expanded during each visit of the
adoption pass). Another consequence of this construction is that q∗(φk) = q(φk) for all original
components k = 1, 2, . . .K , including the target component k′. For new components j, q∗(φj) are
set to the resulting factors from the targeted analysis.

Only the stick-breaking factors q∗(v) must be completely re-written after the expansion. Expansion
forces these factors to shift probability mass onto newly inserted components. Given the counts
from all K + J ′ summaries S∗, the update equations become

q∗(vk)|S
∗ = Beta(vk|α

∗

k1, α
∗

k0), α̂∗

k1 = 1 + N̂k, α̂∗

k0 = α0 +
K+J′

∑

ℓ=k+1

N̂k (30)

The choice to insert new components last in the stick-breaking order (which is implicitly done by
concatenation) is fairly principled. On average, freshly discovered components will be more “rare”
than the original ones, and so will likely have smaller effective mass. Since the stick-breaking
construction is “size-biased”, inserting components with smaller mass later in the order makes sense.

2.3 Adoption of the new components

After expanding the model to have K + J ′ components, we then proceed normally through the
memoized variational inference E-step (local factors) and M-step (global factors) at each batch.
Our goal in this pass is to have newborn components become “adopted” by the original dataset x,
attaining critical mass by actively explaining some data in x.

At the start of this pass, we have the expanded set of global sufficient statistics S∗ described earlier.
Retaining the target summaries S′ as well as the previous global summaries S0 within S∗ allows
each brand-new component a chance to influence several batches of data.

To understand this necessity, consider the alternative: after creating an expanded model, we discard
S′ and keep only the original summaries S0. To be consistent with local assignments, we must

5

expandS0 to have zero mass on new componentsK+1,K+2, . . .K+J ′. Now, imagine visiting the
first batch of data B1 and performing the E-step. After this step, the only mass on new components
will come from the current batch. For each new component j: S0

j = Sj(B1). If this batch does not

assign any mass to component j, then s0j = 0. Next, the following M-step (see the main text’s Eq.

(9)) will completely rewrite λ̂j = λ0 +0 = λ0, reseting to its prior value. Component j will lose all
information from the targeted dataset x′ after only one update, becoming useless even though later
batches may have highly preferred it.

To avoid this disaster, we choose to retain the “dual” interpretations of the data x′ in S∗ throughout

the pass, which ensures every brand-new component j always has mass at least N̂ ′

j . Thus, even

when the first batch is not assigned at all to component j, we’ll have s∗j = sj(x
′), and the update

λ̂j = λ0 + sj(x
′) will retain vital information from our targeted analysis.

At the end of the adoption pass, immediately before the last M-step update to global parameters, we
subtract-away all targeted summaries S′ from the final global summaries S∗. This ensures that by
the end of the adoption pass, both the final global summary and all global factors q∗(v), q∗(φ) have
scale exactly consistent with the dataset x. Under these conditions, the ELBO can be calculated
exactly and merges can proceed.

2.4 Multiple birth moves in one pass

As a final note, performing several birth moves during one pass (refining multiple components at
once) is definitely possible. We need only to collect several subsampled datasets x′

1,x
′

2, . . ., discover
new components from each one via separate variational analyses, and then adopt all new components
into an expanded model. For simplicity we focus on just one birth in the description below. All our
experiments perform just one birth per pass, except for the final analysis of 8 × 8 image patches,
where we execute two births per pass.

6

