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Abstract

We propose a nonparametric framework based on the
beta process for discovering temporal patterns within a het-
erogenous video collection. Starting from quantized local
motion descriptors, we describe the long-range temporal
dynamics of each video via transitions between a set of
dynamical behaviors. Bayesian nonparametric statistical
methods allow the number of such behaviors and the sub-
set exhibited by each video to be learned without supervi-
sion. We extend the earlier beta process HMM in two ways:
adding data-driven MCMC moves to improve inference on
realistic datasets and allowing global sharing of behavior
transition parameters. We illustrate discovery of intuitive
and useful dynamical structure, at various temporal scales,
from videos of simple exercises, recipe preparation, and
Olympic sports. Segmentation and retrieval experiments
show the benefits of our nonparametric approach.

1. Introduction
We consider the problem of grouping similar short-term

motions, such as jogging or grating cheese, that might oc-
cur repeatedly in a video collection. Our goal is to obtain
a temporal segmentation of each video into coherent be-
haviors, and identify how these behaviors are reused across
videos and through time. These behaviors provide a step
towards the perceptual organization of large video collec-
tions, by identifying segments of video arising from similar
physical causes. We adapt a Bayesian nonparametric model
of sequential data, the beta process hidden Markov model
(BP-HMM) [4], to allow completely unsupervised activity
discovery. We need not predefine the relevant behaviors or
even their number, as both are learned directly from data.

The BP-HMM defines an unbounded global library of
behaviors and describes each sequence with a sparse sub-
set of these behaviors. Sequences are generated by Marko-
vian dynamics which allocate a single behavior state to each
timestep. In our video analysis application, these behavior
states then generate vector-quantized motion descriptors.
By clustering motion codewords, our behaviors describe

activity at a coarser temporal scale than typical spatio-
temporal features. We also extend the BP-HMM’s dynami-
cal model and develop improved learning algorithms.

1.1. Previous Work

Video understanding, and in particular activity recog-
nition, is a widely studied area [1]. Many contemporary
approaches begin by extracting descriptors of local spatio-
temporal interest points, which are then vector quantized
into a “bag of features” (BoF) [13]. While this holistic rep-
resentation has proven useful for activity recognition due
to its robustness and efficiency, it does not capture tempo-
ral information crucial for distinguishing complicated ac-
tions (e.g. the long jump and triple jump). Simple exten-
sions have built independent BoF models for each segment
in some fixed, coarse temporal segmentation [9], but cannot
adequately describe more complex and variable chronolo-
gies. Other work has adapted probabilistic topic models
by associating each activity category with a unique latent
topic [23]. However, this rigid structure cannot learn behav-
iors shared across categories or model details which distin-
guish subtypes of the same category.

Among approaches that try to model chronology, many
presume external, expert knowledge of the activity domain,
either by specifying the action semantics [10] or predefin-
ing motion templates for every possible action [11]. Linear
dynamical systems have been used for unsupervised tempo-
ral learning [20], but without notions of discrete behaviors
or shared structure among multiple videos. More recently,
Niebles et al. [12] proposed a discriminative recognition
framework that builds a set of bag-of-words classifiers for
each action type, each with an associated temporal range.
This approach presumes all videos in a category have simi-
lar durations and temporal patterns. Hoai et al. [7] present
a discriminative model for segmentation and classification
that is more robust, but this requires a training set of prese-
lected activities with ground-truth temporal labels.

1.2. Contributions

As one of the first applications of Bayesian nonparamet-
rics to video analysis, we make several important contri-



butions. First and foremost, we improve unsupervised re-
covery of activity patterns. We can learn detailed temporal
structure at multiple scales, from repetitive short-term dy-
namics (e.g., handwaving, as in Fig. 3) to the more struc-
tured patterns of sporting events (e.g., the gymnast’s vault
routine in Fig. 7). Via Bayesian nonparametric priors,
such learning is possible without requiring detailed manual
model design or dataset-specific tuning. Unlike discrimina-
tive classifiers, the dynamical behaviors inferred by the BP-
HMM can be used for multiple purposes; we demonstrate
visualization of the shared dynamical structure of video col-
lections and retrieval of related sequences.

Additionally, we introduce novel data-driven moves
which improve reversible jump MCMC posterior inference
algorithms. Previous work [4] employed simple feature cre-
ation proposals, and their experiments with motion capture
data consider at most 6 sequences. Our novel data-driven
proposals allow efficient inference with hundreds of videos.

We begin in Sec. 2 by describing the BP-HMM model
and the underlying video representation. Sec. 3 then derives
MCMC methods for learning and inference, with a focus on
our data-driven proposals. Sec. 4 demonstrates activity dis-
covery on three datasets: KTH exercises [15], CMU kitchen
activities [3], and Olympic sports [12].

2. Beta Processes for Video Analysis
Here, we describe our video representation (Sec. 2.1),

and then review existing Bayesian nonparametric binary
featural models (Sec. 2.2) and the BP-HMM (Sec. 2.3). We
then extend the BP-HMM to allow behavior dynamics pa-
rameters to be shared across sequences, and discuss related
nonparametric models (Sec. 2.4).

2.1. Sparse Representation of Video Sequences

Following several recent papers, we use spatio-temporal
interest points (STIPs) to compactly describe video se-
quences. We use existing STIP code [9] to detect interest
points and obtain histogram of gradients (HOG) and his-
togram of optical flow (HOF) descriptors. Separately for
each dataset, we build a codebook with V = 1000 code-
words using the K-means algorithm. Each STIP is then
mapped to the nearest codeword, providing a standard “bag
of words” representation [21].

To represent videos as discrete time series, we choose a
temporal bin-width w (in seconds for invariance to frame
rate), divide video i into Ti bins of width w, and count the
number of occurrences of each codeword across all STIPs
within each bin. The parameter w indirectly influences the
time-scale of the learned dynamics.

2.2. Bayesian Nonparametric Featural Models

Feature-based representations provide intuitive descrip-
tions of the high-level actions found in any video corpus.

We assume there exists a global set of possible atomic ac-
tions, which we will call behaviors or features.1 Each fea-
ture is characterized by a distribution on the set of STIP
codewords, and hence captures a particular pattern of short-
term movements. We posit that semantically meaningful,
long-term activities can be understood as compositions of
these features. Each video sequence in the corpus exhibits
a sparse subset of the global features: a clip might contain
running and jumping, but neither diving nor lifting.

Each video “object” in the corpus is associated with a
sparse binary vector fi = [fi1, fi2, . . .] indicating the pres-
ence or absence of each feature in the unbounded global
collection. Corpus-wide behavior assignments are denoted
by F , a binary matrix whose i-th row is fi. Feature k has
an associated corpus frequency bk and STIP distribution pa-
rameterized by θk. These global variables are generated by
an underlying stochastic process, the beta process:

B | B0, γ, β ∼ BP(β, γB0), B =

∞∑
k=1

bkδθk . (1)

Here θk ∼ B0, and the unbounded collection of feature
weights bk is determined by an underlying Poisson pro-
cess [18]. The binary feature vector for object i is then de-
termined by independent Bernoulli draws fik ∼ Ber(bk).
Marginalizing over B, the total number of active features in
object i has distribution Poisson(γ) determined by the mass
parameter γ. The concentration parameter β controls the
degree to which features are shared between objects.

Thibaux and Jordan [18] show that marginalizingB from
this construction leads to an exchangeable prediction rule
for fi known as the Indian buffet process (IBP) [6]. In this
analogy, objects (videos) are customers, and features (be-
haviors) are dishes in a buffet. The first customer (video)
samples Poisson(γ) unique dishes (behaviors). Successive
customer i chooses previously sampled dish k with proba-
bility mk

i proportional to the number of previous videosmk

exhibiting it, and also samples Poisson(γi ) new behaviors.
This IBP representation is useful for MCMC inference.

2.3. Beta Process Hidden Markov Models

To model a collection of video sequences via par-
tially shared dynamical behaviors, we begin with the BP-
HMM [4] shown in Fig. 1. As above we define binary
features fi indicating the behaviors observed in video se-
quence i, which are coupled by a global feature distribution
B ∼ BP(β, γB0). To model discrete STIP encodings, we
associate each feature k with a multinomial distribution θk
on the V possible codewords. A natural conjugate prior
here is a symmetric V -dimensional Dirichlet with mass λθ:

θk | B0 ∼ Dirichlet(λθ, λθ, . . . λθ) (2)

1This terminology comes from the machine learning literature on latent
feature models [6]. Our learned features should not be confused with the
so-called “visual features” generated by bottom-up interest point detectors.
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Figure 1. The BP-HMM as a directed graphical model. Binary
features fi determine the set of possible temporal states z(i)t in se-
quence i, which in turn generate observed STIPs x(i)t . We illustrate
sequence-specific dynamics η(i). Sec. 2.3 describes an alternative
model which shares dynamics across all videos.

We consider two different approaches for coupling these
emission parameters with Markov state dynamics.

Our baseline model, proposed by Fox et al. [4], asso-
ciates independent transition dynamics with each video. In
particular, the transition distribution π(i)

j from each state j
for the HMM of video i is obtained by drawing a set of in-
dividual transition weights η(i), and then normalizing these
according to the feature assignments fi as follows:

η
(i)
jk ∼ Gam(α+ κδj,k, 1), π

(i)
j =

η
(i)
j ◦ fi∑
k fikη

(i)
jk

(3)

Here, δj,k = 1 if j = k, and 0 otherwise. The element-wise
vector product, denoted by ◦, assigns positive transition
probability π(i)

jk only to features k active in fi. The sticky pa-
rameter κ places extra expected mass on self-transitions [5],
encouraging the model to learn state sequences with the
temporal persistence of real activities.

The transition matrix π(i) and emission distributions θ
fully parameterize the HMM which generates the observed
STIPs. For each timestep t, we draw its feature assignment
z
(i)
t ∈ {k | fik = 1} according to z(i)t ∼ π

(i)

z
(i)
t−1

. The Lt
spatio-temporal codewords in bin t, whose histogram we
denote by x(i)t , are then emitted according to

x
(i)
t ∼ Multinomial(θ

z
(i)
t
, Lt) (4)

The number of emissions Lt can vary with time, but we
assume that Lt is independent of the current state z(i)t .

While the preceding prior on transition dynamics is flex-
ible, in situations where behavior transitions across many
videos are very similar we expect that sharing transition
weights across all videos will be more appropriate. We thus
also consider the following, alternative prior:

η
(0)
jk ∼ Gam(α+ κδj,k, 1), π

(i)
j =

η
(0)
j ◦ fi∑
k fikη

(0)
jk

(5)

Here, a single common set of weights η(0) is normalized by
sequence-specific feature activations. This sharing of tran-
sition information across sequences can provide noticeable
gains on real data (Fig. 3). Note that there can still be sig-
nificant variability across multiple state sequences z(i) sam-
pled from common Markov dynamics.

2.4. Related Work

There have been few applications of Bayesian nonpara-
metric models to video analysis. For general nonparametric
modeling of sequential data, alternatives to the BP-HMM
include the earlier infinite HMM [2] and the hierarchical
Dirichlet process (HDP) HMM [17]. The HDP-HMM has
been used in detect unusual events in video sequences [14].
For problems of far-field surveillance from static cameras,
the HDP has been used to model interactions among simple
activities [22]. Later work proposed a dependent Dirichlet
process HMM that uncovers temporal rules for traffic mo-
tion patterns in a single scene [8].

Our model is novel in its emphasis on understanding col-
lections of videos rather than individual clips, and in its fea-
tural representation of behavior-video relationships via the
beta process. Hierarchical Dirichlet process models would
force all videos to have positive probability of displaying all
behaviors, but the beta process elegantly allows a video to
contain only a sparse subset of relevant behaviors. The beta
process has been used for image denoising [24], but has not
yet been used to model temporal video sequences.

3. Learning via MCMC
Due to the complex combinatorial structure of the BP-

HMM, we employ Markov chain Monte Carlo (MCMC)
methods for learning and inference. We base our algorithms
on the exact MCMC procedure proposed by Fox et al. [4],
whose collapsed sampler marginalizes over feature inclu-
sion parameters b and state assignments z. Conditional up-
dates to the feature matrix F , emission distributions θk, and
transition weights η proceed in an iterative fashion.

3.1. Resampling Feature Indicator Variables

We proceed sequentially through the time series i and
sample their features fi in two stages: features shared by
some other time series, and features unique to time series i.
For shared features fik, we propose flipping their binary
values one at a time, and accept or reject according to the
Metropolis-Hastings rule [4].

For sequence-specific features, Fox et al. [4] used re-
versible jump MCMC to define a pair of feature birth and
death moves. While this approach elegantly avoids the need
to approximate the infinite BP-HMM, their birth proposals
use the (typically vague) prior to propose parameters θk∗
for new features k∗. Such proposals rarely explain the high-
dimensional observed codewords found in realistic data, re-
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Figure 2. Comparison of different proposal distributions for the
birth move of reversible jump MCMC, using vault and triple jump
videos. Left: Log joint probability versus iteration, across 10 runs
for each method. The data-driven proposals quickly reach higher
probability posterior configurations. Right: Example key frames.
All 10 prior runs assigned (a) and (b) to the same behavior due
to poor exploration of the feature space, while 5 data-driven runs
discover different behaviors for these intuitively distinct activities.

sulting in low acceptance rates and slow exploration. We
instead consider a data-driven proposal distribution [19],
based on the posterior of θk∗ given data in a randomly cho-
sen subwindow W of the current sequence:

θk∗ |W ∼ Dir(C1 + λθ, C2 + λθ, . . . CV + λθ) (6)
Here, Cv counts occurrences of codeword v in window W .

To validate this contribution, we compare data-driven
(DD) and Prior birth proposals in Fig. 2. Here, we apply
the BP-HMM to a collection of 20 vault and 20 triple jump
sequences. We start from a poor configuration of just 10
states, and run 10 chains for each proposal. In less than 50
iterations, all DD runs achieve high probabilities that are su-
perior to all Prior runs even after 2000 iterations. Each DD
run recovers about 50 total behaviors, while each Prior run
finds only 25. To illustrate qualitative benefits, we consider
the behaviors assigned to fragments (5 timesteps, 0.8 sec-
onds) from two videos: (a) standing up after a triple jump,
and (b) running towards a vault (see Fig. 2). These clips
show very different activities, but share some STIP code-
words in common. We measure how often the dominant
behavior in (b) is re-used within clip (a). All 10 Prior runs
assign (b)’s dominant behavior to 2-3 timesteps in clip (a).
DD proposals show a clear improvement, with 5 runs shar-
ing no behaviors and the remaining 5 using (b)’s majority
behavior in just 1 of (a)’s 5 timesteps.

3.2. Resampling HMM Parameters

Given fixed F , θ, and η, we can draw state sequences z as
auxiliary variables using dynamic programming [16]. Each
θk can then be sampled from a conjugate posterior. Similar
closed-form updates exist for sequence-specific transition
parameters η(i), though we note importantly that the update
equations given in [4] are slightly incorrect. The correct
posterior for η(i), up to a normalization constant, equals

p(η
(i)
jk | zi, fik = 1) ∝

(η
(i)
j,k)

N
(i)
jk +α+δj,kκ−1e−η

(i)
jk[∑

` fi`η
(i)
j`

]N(i)
j.

(7)

where N (i)
jk counts the number of transitions from state j

to k in sequence z(i), and N
(i)
j. =

∑
k fikN

(i)
jk . Draws

from this posterior can be obtained by sampling a vector
Dir(. . . , N (i)

jk + α + δj,kκ, . . .), and then scaling it by a
gamma random variable with mass determined by the prior
distributions on the active features (see supplement).

Updates for globally-shared η(0) have similar posteriors,
but require terms from all sequences that make closed-form
posterior draws intractable. We use Metropolis-Hastings
updates based on a gamma random walk proposal with
mean equal to the current value, and variance 10.

4. Experiments
We investigate the capabilities of the BP-HMM on three

video datasets. Our goals here are twofold. First, we illus-
trate that our approach recovers qualitatively useful hidden
structure. Second, we quantitatively demonstrate that the
BP-HMM provides useful representations for activity seg-
mentation and retrieval tasks.

For all experiments, we run MCMC inference for at least
2000 iterations and fix model parameters θ̂, ẑ, η̂, F̂ to the
final sample. For all datasets except KTH, we use sequence-
specific dynamics, as global sharing is likely not beneficial
when temporal variability is significant. We use a fixed set
of hyperparameters for all datasets, with transition weights
α = 2 and κ = 10α, BP mass γ = 2, and BP concentration
β0 = 1 (as in the conventional IBP [6]). We encourage
moderately sparse emission distributions via λθ = 0.75.

4.1. KTH Exercise Dataset

The KTH actions dataset contains simple exercises per-
formed by 25 actors. Rather than conventional supervised
activity recognition, we explore two unsupervised analy-
ses of this data. We first compare different dynamics shar-
ing schemes, and later demonstrate recovery of meaningful
temporal segmentations. For both tasks, we use only HOF
descriptors and set the bin width w for the video time series
to 0.08 seconds (2 frames) to capture intricate motion.

Due to the strong similarity in temporal structure be-
tween videos, we intuitively expect that a model with glob-
ally shared dynamics will perform well. Our first experi-
ment studies qualitatively what benefits this change brings.
We train two BP-HMM models on all 378 training videos in
the categories clap, wave, and jog, one using global dy-
namics and the other sequence-specific. Fig. 3 compares
each model’s MAP estimate for z(i) for several example
sequences. For both clap and wave, global sharing in-
creases the level of detail (number of behaviors) found in
a typical sequence, while also producing more consistent
segmentations across videos.

Next, we evaluate the BP-HMM’s ability to recover
meaningful segmentations. We construct a dataset of 12



Sequence Dynamics Global Dynamics

Figure 3. Qualitative results for wave (top) and clap (bottom) videos from KTH. Colors indicate distinct behaviors. Left: Behavior
segmentations for example sequences from actors 11, 13, and 18. Each row in the image represents a single video clip, labeled at left by
actor and trial. Each sequence was aligned by hand to show two complete cycles of the wave/clap action. Far left uses sequence-specific
dynamics, near left uses globally shared dynamics (Sec. 2.3). Sharing dynamics across all sequences yields more detailed segmentations (6
phases for wave, 4 for clap) that are also more consistent across videos. Right: Key frames with behavior annotations, using global model.

Figure 4. Results on KTH mashup sequences. Top Left: Binary feature matrix recovered by BP-HMM. White indicates presence, black
absence. Each row shows behaviors assigned to a single mashup sequence. Each sequence is assigned a text label based on the categories
of its source clips (B=box, C=clap, W=wave, J=jog). Each behavior is assigned to a true category by state sequence proximity (indicated
by text label on horizontal axis). Bottom Left: Segmentation accuracy. Scores computed for run with highest joint probability among 5
initializations of MCMC. Middle: Estimated state sequences for BBB (top) and BWJJ (bottom) mashups, shown with key frames from each
source clip. Distinct boxing behaviors correspond to clips taken from different actors. Colors above dotted line indicate true categories at
each timestep, colors below indicate recovered behaviors. Multiple behaviors can map to one true category (indicated by color similarity),
so mismatch does not necessarily indicate error. Black dots indicate STIP codewords observed at each timestep: each location along
vertical axis marks presence of a unique codeword (vocab size=1000). Right: Ground truth and estimated behaviors for other 10 mashups.

sequences which are each “mashups” of 3-4 KTH clips, in-
spired by [7]. Each mashup concatenates clips at random
from box, clap, wave, and jog actions, with variability
in the actions present across sequences. This KTHMashup
dataset, illustrated in Fig. 4, allows us to define a ground-
truth action category label to each timestep, and thus quan-
tify the accuracy of a BP-HMM segmentation.

The BP-HMM discovers 9 behaviors, whose binary pres-
ence in each mashup is depicted in Fig. 4. We observe that
4 of these 9 correspond to boxing activities, with different
states allocated to each of the four actors whose clips gen-
erated the data. Each actor has a slightly different style of
boxing (moving feet, punch out vs. up, etc.), which pro-
duces different motions and thus distinct codeword distri-
butions. The model cleanly finds a single state for both
clapping and jogging, and splits the waving clips into two

phases (arms up, arms down). Note that with only 12 se-
quences, we expect the level of detail in wave segmentation
to be lower than that recovered using 120 sequences in the
first experiment. This showcases the power of the nonpara-
metric approach to adapt to the available data.

To compare the BP-HMM to a conventional parametric
HMM, we compute segmentation accuracy by first mapping
each estimated state to its closest true label, and then com-
puting the number of timesteps where this relabeled esti-
mate matches ground truth across all 12 KTHMashup se-
quences. Fig. 4 shows that our BP-HMM achieves better
segmentation accuracy than any HMM model found in a
search over a reasonable range of the number of hidden
states. Our nonparametric approach, which automatically
explores the number of total behaviors as well as the sparse
subset available to each sequence, is clearly beneficial.



4.2. CMU Kitchen Dataset

We next apply the BP-HMM model to videos from the
CMU Multi-Modal Activity Database [3]. Each video
is several minutes long and depicts a single actor in the
same kitchen cooking a prescribed dish from start to fin-
ish. We chose 3 distinct recipes (Sandwich, Pizza, and
Brownie) and downloaded 10 training videos for each
recipe. Although simple in the dimensions of scene and
object variability, the activities in these videos are com-
plex over time. We evaluate via quantitative retrieval per-
formance, as well as unsupervised exploration of the latent
behaviors discovered by our model of these sequences. We
set the window size w to be 0.5 seconds (15 frames), to cap-
ture the coarser scale behaviors of these longer videos.

4.2.1 Retrieval Evaluation

Our first goal is to determine if the hidden structure found
by BP-HMM can generalize to novel videos. We propose
a retrieval task: rank videos in a held-out test set by sim-
ilarity to a query video from training. We take recipe la-
bels to be ground truth, which means that Brownie videos
should be judged more similar to other Brownie videos
than any other recipe. We train our model on the 30 training
videos, and then estimate a state sequence z for each of 30
test videos (10 per recipe). We summarize each video i by
a histogram φi indicating how many timesteps are assigned
to each behavior. We compute similarity between videos
(using either the baseline BoF codeword histogram or our
BP-HMM behavior histogram φi) via the χ2 kernel [21].

After computing rankings for each query video in train-
ing, we obtain the class-specific precision-recall curves of
Fig. 5. At all values of recall, our BPHMM representation
provides the same or better precision compared to bag-of-
features. Overall, we find BP-HMM’s F-score to be 0.804,
which compares favorably to 0.703 for BoF. As a further
test, we compare to the rigid temporal discretization of BoF
proposed by [9], which given 2 bins builds a separate BoF
histogram for the first half and second half of each video.
We consider both 2 bins and 3 bins, finding the best choice
(2 bins) yields only 0.713. These results suggest that BP-
HMM’s flexible approach to temporal structure is very use-
ful for measuring similarity in this challenging dataset.

4.2.2 Unsupervised Learning of Behavior Patterns

Next, we explore the BP-HMM’s utility in unsupervised
activity discovery. After training on all 30 CMUKitchen
videos, we examine key behaviors and their sharing patterns
across videos in Fig. 6. For this illustration, we manually
selected a handful of features that best matched human in-
terpretable action concepts. We then plot the appearance
patterns of these features across all videos and time, as well
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Figure 5. Comparison of BP-HMM with bag-of-features
(BoF) representations on retrieval of 10 test videos for each
CMUKitchen recipe. The BPHMM’s temporal representation
provides a superior video similarity measure.

as example frames sampled randomly from those assigned
to each feature. Note that our visualization only shows de-
tections for a single hand-picked feature linked to each con-
cept. This doesn’t necessarily mean a Pizza video lacking
the “Grate Cheese” feature lacked that activity, but just that
the visualized feature was not used.

Overall, Fig. 6 suggests that the BP-HMM successfully
identifies interesting behaviors and intuitive sharing pat-
terns despite its completely unsupervised approach. For ex-
ample, the “Grate Cheese” and “Slice Pepperoni” behav-
iors are almost exclusive to videos from the Pizza recipe,
while both Pizza and Brownie recipes use the oven near
the end. All actors are required by data collection protocol
to switch a light on and off at the start and end of their ses-
sions, and we find a corresponding behavior. Furthermore,
we discover that only Sandwich and Brownie recipes
require ingredients stored in the overhead cupboard. Some
of the depicted feature assignments are false positives. For
example, the first “Spread Peanut Butter” frame shown is
actually from a Pizza video, probably identified based on
local motion of the hands. Nevertheless, we observe that
behaviors are quite consistent across subjects.

The BP-HMM often discovers multiple features that cor-
respond to what a human might consider a single behavior
(e.g., stirring ingredients in a bowl). This is driven by sub-
tle differences in observed motion, which produce different
codewords and thus distinct states. For example, the “Stir
Bowl Unique” feature is unique to subject 13. Inspection re-
veals that his stirring technique is noticeably different from
peers (see supplementary video). This example highlights
the ability of our model to identify idiosyncracies and un-
usual behaviors, which can be useful in many applications.

4.3. Olympic Sports Dataset

The Olympic Sports dataset, introduced by [12], con-
tains sports videos collected from YouTube that have sig-
nificant temporal structure as well as variability in view-
point, background clutter, and camera motion. We use re-
lease 2010.09.07, which contains 16 action categories
represented by 640 training and 132 test video; this is a
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Figure 6. Behaviors found for CMUKitchen. Top: Example frames assigned to discovered behaviors (text labels are manually assigned).
Bottom: Assigned locations of behaviors in time across all 30 videos in the corpus. Each row represents a single video, labeled at left by
recipe type and actor ID. We show only locations where the feature is assigned to at least two time steps in a local window.

Figure 7. Example frames and behavior annotations recovered by the BP-HMM on OlympicSports. Colors indicate distinct behaviors.
Left: 3 phase hammer throw wind-up. Right: 4 phase vault progression. Annotated videos available in supplementary material.

subset of the data used by [12]. For this dataset, we set
our temporal width w to 0.16 s (4 frames per bin). The size
and complexity of the corpus requires that we train on data
from each category separately.

Qualitative results are shown in Fig. 7. We recover
an intuitive breakdown of the periodic wind-up an ath-
lete performs in a hammer throw, swinging the hammer
around multiple times to build momentum before the throw.

We also find sensible vault segmentations, with sepa-
rate phases for the approach, jump, acrobatics, and landing.
These results highlight the flexibility and expressiveness our
approach can bring to video collections.

In quantative evaluations, however, the BP-HMM does
not outperform a simple BoF in Olympic Sports retrieval
(F1-score of 0.25 vs. 0.32), though both scores are poor in
an absolute sense. The BP-HMM’s lower score is likely ex-



Figure 8. Key frames and noisy STIP detections (red crosses) for
Olympic Sports clips with clutter, camera motion, and variable
lighting. Lower Right: STIP counts over time for each example.
Frequent spikes lead to BP-HMM oversegmentation.

plained by unreliable interest point detection. Fig. 8 shows
that huge instantaneous spikes in STIP detections can oc-
cur due to background motion or camera shake. While the
holistic BoF approach can be robust to such noise, spurious
temporally localized STIPs can dramatically alter the input
to the BP-HMM, resulting in significant oversegmentation.
Removing camera motion as well as isolating foreground
activity in the input video representation would likely im-
prove the BP-HMM’s performance.

5. Discussion

We have demonstrated unsupervised activity discovery
in video collections via the BP-HMM. We achieve scal-
able MCMC inference with our novel data-driven propos-
als, and encourage more consistent, detailed segmentations
via global sharing of dynamics parameters. We expect im-
proved video representations and more efficient inference
methods to be fruitful avenues for further work.

Acknowledgments MCH supported by an NSF graduate re-
search fellowship. CMUKitchen data (http://kitchen.
cs.cmu.edu) funded in part by NSF Grant No. EEEC-0540865.

References
[1] J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A

review. ACM Computing Surveys (CSUR), 43(3), 2011. 1
[2] M. Beal, Z. Ghahramani, and C. Rasmussen. The infinite

hidden Markov model. In NIPS, 2002. 3
[3] F. De la Torre et al. Guide to the Carnegie Mellon Univer-

sity Multimodal Activity (CMU-MMAC) database. Tech-
nical Report CMU-RI-TR-08-22, CMU Robotics Institute,
2008. 2, 6

[4] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky.
Sharing features among dynamical systems with beta pro-
cesses. In NIPS, 2010. 1, 2, 3, 4

[5] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky.
A sticky HDP-HMM with application to speaker diarization.
Annals of Applied Statistics, 5:1020–1056, 2011. 3

[6] T. L. Griffiths and Z. Ghahramani. Infinite latent feature
models and the Indian buffet process. In NIPS, 2006. 2,
4

[7] M. Hoai, Z. Lan, and F. de la Torre. Joint segmentation and
classification of human actions in video. In CVPR, 2011. 1,
5

[8] D. Kuettel, M. Breitenstein, L. V. Gool, and V. Ferrari.
What’s going on? Discovering spatio-temporal dependen-
cies in dynamic scenes. In CVPR, 2010. 3

[9] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 1, 2, 6

[10] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal,
contextual and ordering constraints for recognizing complex
activities in video. In CVPR, 2007. 1

[11] P. Natarajan and R. Nevatia. View and scale invariant action
recognition using multiview shape-flow models. In CVPR,
2008. 1

[12] J. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling tempo-
ral structure of decomposable motion segments for activity
classification. In ECCV, pages 392–405, 2010. 1, 2, 6, 7

[13] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-
ing of human action categories using spatial-temporal words.
IJCV, 79(3):299–318, 2008. 1

[14] I. Pruteanu-Malinici and L. Carin. Infinite hidden Markov
models for unusual-event detection in video. IEEE Trans. on
Image Processing, 17(5):811–822, 2008. 3

[15] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local SVM approach. In ICPR, 2004. 2

[16] S. L. Scott. Bayesian methods for hidden Markov mod-
els: Recursive computing in the 21st century. JASA,
97(457):337–351, 2002. 4

[17] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierar-
chical Dirichlet processes. Journal of the American Statisti-
cal Association, 101(476):1566–1581, 2006. 3

[18] R. Thibaux and M. I. Jordan. Hierarchical beta processes and
the Indian Buffet process. In AISTATS, 2007. 2

[19] Z. Tu and S. C. Zhu. Image segmentation by data-driven
Markov chain Monte Carlo. PAMI, 24(5):657–673, 2002. 4

[20] P. K. Turaga and A. Veeraraghavan. From videos to verbs:
Mining videos for activities using a cascade of dynamical
systems. In CVPR, 2007. 1

[21] H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid.
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