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Abstract

Mixture models and topic models generate each observation from a single cluster, but standard
variational posteriors for each observation assign positive probability to all possible clusters.
This requires dense storage and runtime costs that scale with the total number of clusters, even
though typically only a few clusters have significant posterior mass for any data point. We pro-
pose a constrained family of sparse variational distributions that allow at most L non-zero entries,
where the tunable threshold L trades off speed for accuracy. Previous sparse approximations
have used hard assignments (L = 1), but we find that moderate values of L > 1 provide superior
performance. Our approach easily integrates with stochastic or incremental optimization algo-
rithms to scale to millions of examples. Experiments training mixture models of image patches
and topic models for news articles show that our approach produces better-quality models in far
less time than baseline methods.

1 Introduction

Mixture models (Everitt, 1981) and topic models (Blei et al., 2003) are fundamental to Bayesian unsupervised
learning. These models find a set of clusters or topics useful for exploring an input dataset. Mixture models
assume the input data is fully exchangeable, while topic models extend mixtures to handle datasets organized by
groups of observations, such as documents or images.

Mixture and topic models have two kinds of latent variables. Global parameters define each cluster, including its
frequency and the statistics of associated data. Local, discrete assignments then determine which cluster explains
a specific data observation. For both global and local variables, Bayesian analysts wish to estimate a posterior
distribution. For these models, full posterior inference via Markov chain Monte Carlo (MCMC, Neal (1992)) av-
erages over sampled cluster assignments, producing asymptotically exact estimates at great computational cost.
Optimization algorithms like expectation maximization (EM, Dempster et al. (1977)) or (mean field) variational
Bayes (Ghahramani and Beal, 2001; Winn and Bishop, 2005) provide faster, deterministic estimates of cluster as-
signment probabilities. However, at each observation these methods give positive probability to every cluster,
requiring dense storage and limiting scalability.

This paper develops new posterior approximations for local assignment variables which allow optimization-based
inference to scale to hundreds or thousands of clusters. We show that adding an additional sparsity constraint to
the standard variational optimization objective for local cluster assignments leads to big gains in processing speed.
Unlike approaches restricted to hard, winner-take-all assignments, our approach offers a tunable parameter L that
determines how many clusters have non-zero mass in the posterior for each observation. Our approach fits into any
variational algorithm, regardless of whether global parameters are inferred by point estimates (as in EM) or given
full approximate posteriors. Furthermore, our approach integrates into existing frameworks for large-scale data
analysis (Hoffman et al., 2013; Broderick et al., 2013) and is easy to parallelize. Our open source Python code1

exploits an efficient C++ implementation of selection algorithms (Blum et al., 1973; Musser, 1997) for scalability.

1http://bitbucket.org/michaelchughes/bnpy-dev/
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Fig. 1: Impact of sparsity-level L on the speed and accuracy of estimating a zero-mean Gaussian mixture model for 8x8 pixel
patches from natural images. a: Comparison of algorithm substep costs for 2 complete passes through entire 3.6 million patch
dataset from Sec. 4 with K = 200 clusters. b: Speed comparison of our L−sparse approach when computing responsibilities
r̂ given fixed weights W for 36,000 patches. c: Speed comparison of our L−sparse approach when computing the per-cluster
statistics {Nk, Sk}

K

k=1 defined in Eq. (7) for 36,000 patches. d: Cumulative density function of variational distance between
dense and L−sparse responsibilities across 36,000 patches, using the pretrained K = 200 mixture model published online by
Zoran and Weiss (2012).

2 Variational Inference for Mixture Models

GivenN observed data vectors x = {x1, x2, . . . xN}, a mixture model assumes each observation belongs to one of
K clusters. Let hidden variable zn ∈ {1, . . . ,K} denote the specific cluster assigned to xn. The mixture model has
two sets of global parameters, the cluster frequencies {πk}

K
k=1 and cluster shapes {φk}

K
k=1. Let π ∼ DirK(α/K)

for scalar α > 0, where πk is the probability of observing data from cluster k: zn ∼ CatK(π). We generate
observation xn according to likelihood

xn ∼ F(φzn), log F(xn|φk) = φTk s(xn)− c(φk). (1)

The exponential family density F (xn|φk) has sufficient statistics s(xn) ∈ R
D and natural parameter φk ∈ R

D.
The normalization function c(φk) ensures that F integrates to one. We let φk ∼ P(φk|λ̄), where P is a density
conjugate to F with parameter λ̄. Conjugacy is convenient but not necessary: we only require that the expectation
E[logF (xn|φk)] can be evaluated in closed-form.

Mean-field variational inference (Wainwright and Jordan, 2008) seeks a factorized posterior q(z)q(π)q(φ) ≈
p(z, π, φ | x). Each posterior factor has free parameters (denoted with hats) that are optimized to minimize
the KL divergence between the simplified approximate density and the true, intractable posterior. The separate
factors for local and global parameters have specially chosen forms:

q(π) = DirK(π|θ̂), q(φ) =
∏K

k=1 P(φk|λ̂k), q(z) =
∏N

n=1 Cat(zn | r̂n). (2)

Our focus is on the free parameter r̂n which defines the local assignment posterior q(zn). This vector is non-
negative and sums to one. We interpret value r̂nk as the posterior probability of assigning observation n to cluster
k. This is sometimes called cluster k’s responsibility for observation n.

The goal of variational inference is to find the optimal free parameters under a specific objective function L. Using

full approximate posteriors of global parameters yields the evidence lower-bound objective function L(r̂, θ̂, λ̂) in
Eq. (3) which is equivalent to minimizing KL divergence (Wainwright and Jordan, 2008). Point estimation of

global parameters π̂, φ̂ instead yields a maximum-likelihood (ML) objective in Eq. (4).

ELBO: L(x, r̂, θ̂, λ̂) = log p(x)− KL(q||p) = Eq(z,π,φ)[log p(x, z, π, φ)− log q(z, π, φ)]. (3)

ML: L(x, r̂, π̂, φ̂) = Eq(z)[log p(x, z | π̂, φ̂)− log q(z)]. (4)

Closed-form expressions for both objectives L are in Appendix A. Given an objective function, optimization typi-
cally proceeds via coordinate ascent (Neal and Hinton, 1998). We call the update of the data-specific responsiblities

r̂ the local step, which is alternated with the global update of q(π), q(φ) or π̂, φ̂.

2.1 Computing dense responsiblities during local step

The local step computes a responsibility vector r̂n for each observation n that maximizes L given fixed global
parameters. Under either the approximate posterior treatment of global parameters in Eq. (3) or ML objective of
Eq. (4), the optimal update (dropping terms independent of r̂n) maximizes the following objective function:

Ln(r̂n) =
∑K

k=1 r̂nkWnk(xn)− r̂nk log r̂nk, Wnk , Eq[log πk] + Eq[logF (xn|φk)]. (5)
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Input: [Wn1 . . .WnK ] : log posterior weights.
Output: [r̂n1 . . . r̂nK ] : responsibility values

1: def DENSERESPFROMWEIGHTS(Wn)
2: for k ∈ 1, . . . K do
3: r̂nk = eWnk

4: sn =
∑K

k=1 r̂nk
5: for k ∈ 1, . . . K do
6: r̂nk = r̂nk/sn
7: return r̂n

Input: [Wn1 . . .WnK ] : log posterior weights.
Output: {r̂nℓ, inℓ}

L
ℓ=1 : resp. and indices

1: def TOPLRESPFROMWEIGHTS(Wn, L)
2: in1, . . . inL = SELECTTOPL(Wn)
3: for ℓ ∈ 1, . . . L do
4: r̂nℓ = eWninℓ

5: sn =
∑L

ℓ=1 r̂nℓ
6: for ℓ ∈ 1, . . . L do
7: r̂nℓ = r̂nℓ/sn
8: return r̂n, in

Alg. 1: Updates for the responsibilities of observation n given weights defined in Eq. (5). Left: DENSERESPFROMWEIGHTS

is the standard solution to the optimization problem in Eq. (6). This requires K evaluations of the exp function, K summations,
and K divisions. Right: Our proposed method TOPLRESPFROMWEIGHTS optimizes the same objective subject to the addi-
tional constraint that at most L clusters have non-zero posterior probability. First, an O(K) introspective selection algorithm
(Musser, 1997) finds the indices of the L largest weights. Given these, we find the optimum with L evaluations of the exp
function, L summations, and L divisions.

We interpret Wnk ∈ R as the log posterior weight that cluster k has for observation n. Larger values imply that
cluster k is more likely to be assigned to observation n. For ML learning, the expectations defining Wnk are
replaced with point estimates.

Our goal is to find the responsibility vector r̂n that optimizes Ln in Eq. (5), subject to the constraint that r̂n is
non-negative and sums to one so q(zn|r̂n) is a valid density:

r̂∗n = argmaxLn(r̂n), subject to r̂n ≥ 0,
∑

k r̂nk = 1. (6)

The optimal solution is simple: exponentiate each weight and then normalize the resulting vector. The function
DENSERESPFROMWEIGHTS in Alg. 1 details the required steps. The runtime cost is O(K), and is dominated by
the K required evaluations of the exp function.

2.2 Computing sufficient statistics needed for global step

Given fixed assignments r̂, the global step computes the optimal values of the global free parameters under
L. Whether doing point estimation or approximate posterior inference, this update requires only two finite-
dimensional sufficient statistics of r̂, rather than all r̂ values. For each cluster k, we must compute the expected
count Nk ∈ R

+ of its assigned observations and the expected data statistic vector Sk ∈ R
D:

Nk(r̂) =
∑N

n=1 r̂nk, Sk(x, r̂) =
∑N

n=1 r̂nks(xn). (7)

The required work is O(NK) for the count vector and O(NKD) for the data vector.

3 Fast Local Step for Mixtures via Sparse Responsibilities

Our key contribution is a new variational objective and algorithm that scales better to large numbers of clusters
K. Much of the runtime cost for standard variational inference algorithms comes from representing r̂n as a dense
vector. Although there are K total clusters, for any observation n only a few entries in r̂n will have appreciable
mass while the vast majority are close to zero. We thus further constrain the objective of Eq. (6) to allow at most
1 ≤ L ≤ K non-zero entries:

r̂∗n = argmaxr̂n
Ln(r̂n), s.t. r̂n ≥ 0,

∑K
k=1 r̂nk = 1,

∑K
k=1 1(r̂nk > 0) = L. (8)

The function TOPLRESPFROMWEIGHTS in Alg. 1 solves this constrained optimization problem. First, we identify
the indices of the top L values of the weight vector Wn in descending order. Let in1, . . . , inL denote these top-
ranked cluster indices, each one a distinct value in {1, 2, . . . ,K}. Given this active set of clusters, we simply
exponentiate and normalize only at these indices. We can represent this solution as an L-sparse vector, with L
real values r̂n1, . . . , r̂nL and L integer indices in1, . . . , inL. Solutions are not unique if the posterior weights Wn

contain duplicate values. We handle these ties arbitrarily, since swapping duplicate indices leaves the objective
unchanged.

3.1 Proof of optimality.

We offer a proof by contradiction that TOPLRESPFROMWEIGHTS solves the optimization problem in Eq. (8).
Suppose that r̂′n is optimal, but there exists a pair of clusters j, k such j has larger weight but is not included in
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the active set while k is. This means Wnj > Wnk, but r̂′nj = 0 and r̂′nk > 0. Consider the alternative r̂∗n which

is equal to vector r̂′n but with entries j and k swapped. After substituting into Eq. (5) and simplifying, we find the
objective function value increases under our alternative: Ln(r̂

∗
n)− Ln(r̂

′
n) = r̂′nk · (Wnj −Wnk) > 0. Thus, the

optimal solution must include the largest L clusters by weight in its active set.

3.2 Runtime cost.

Alg. 1 compares DENSERESPFROMWEIGHTS and our new algorithm TOPLRESPFROMWEIGHTS side-by-side.
The former requires K exponentiations, K additions, and K divisions to turn weights into responsibilities. In
contrast, given the indices in our procedure requires only L of each operation. Finding the active indices in via
SELECTTOPL requires O(K) runtime.

Selection algorithms (Blum et al., 1973; Musser, 1997) are designed to find the top L values in descending order
within an array of size K. These methods use divide-and-conquer strategies to recursively partition the input
array into two blocks, one with values above a pivot and the other below. Musser (1997) introduced a selection
procedure which uses introspection to smartly choose pivot values and thus guarantee O(K) worst-case runtime.
This procedure is implemented within the C++ standard library as nth_element, which we use for SELECTTOPL
in practice. This function operates in-place on the provided array, rearranging its values so that the first L entries
are all bigger than the remainder. Importantly, there is no internal sorting within either partition. Example code is
in found in Appendix F.

Choosing sparsity-level L naturally trades off execution speed and training accuracy. When L = K, we recover the
original dense responsibilities, while L = 1 assigns each point to exactly one cluster, as in k-means. Our focus is
on modest values of 1 < L≪ K. Fig. 1b shows that for large K values TOPLRESPFROMWEIGHTS is faster than
DENSERESPFROMWEIGHTS for L = 4 or L = 16. The dense method’s required K exponentiations dominates
the O(K) introspective selection procedure.

With L−sparse responsibilities, computing the statistics Sk, Nk in Eq. (7) scales linearly with L rather than K.
This gain is useful when applying Gaussian mixture models with unknown covariances to image patches, where
each 8x8 patch requires an expensive 4096-dimensional data statistic s(xn) = xnx

T
n . Fig. 1c shows the cost of the

summary step virtually disappears when L = 4 rather than L = K. This savings makes the overall algorithm over
twice as fast (Fig. 1a), with the remaining bottleneck the dense calculation of weights W , which might be sped up
for some likelihoods using fast data structures for finding nearest-neighbors. Fig. 1d shows that L = 8 captures
nearly identical responsibility values as L = K, indicating that modest L values may bring speed gains without
noticeable sacrifice of model quality.

3.3 Related work.

Hard assignments. One widespread practice used for decades is to consider “hard” assignments, where each
observation is assigned to a single cluster, instead of a dense vector of K responsibilities. This is equivalent to
setting L = 1 in our L−sparse formulation. The k-means algorithm (Lloyd, 1982) and its nonparametric extension
DP-means (Kulis and Jordan, 2012) justify L = 1 sparsity via small-variance asymptotics. So-called “hard EM”
Viterbi training (Juang and Rabiner, 1990), or maximization-expectation algorithms (Kurihara and Welling, 2009)
both use L = 1 hard assignments. However, we expect L = 1 to be too coarse for many applications while
moderate values like L = 8 offer better approximations, as shown in Fig. 1d.

Sparse EM. A prominent early method to exploit sparsity in responsibilities is the Sparse EM algorithm proposed
by Neal and Hinton (1998). Sparse EM maintains a dense vector r̂n for each observation n, but only edits a subset
of this vector during each local step. The edited subset may consist of the L largest entries or all entries above some
threshold. Any inactive entries are “frozen” to current non-zero values and newly edited entries are normalized
such that the length-K vector r̂n preserves its sum-to-one constraint.

Sparse EM can be effective for small datasets with a few thousand examples and has found applications such as
MRI medical imaging (Ng and McLachlan, 2004). However, our L−sparse approach has three primary advantages
relative to Sparse EM: (1) Our L−sparse method requires less per-observation memory for responsibilities. While
Sparse EM must store K floating-point values to represent a responsibility vector, we need to store only L. (2)
Our L−sparse method easily scales to minibatch-based training algorithms in Sec. 3.4, but Sparse EM’s required
storage is prohibitive. Our approach can safely discard responsiblity vectors after required sufficient statistics are
computed. Sparse EM must explicitly store responsibilities for every observation in the dataset at cost O(NK) if
future sparse updates are desired. This prohibits scaling to millions of examples by processing small minibatches,
unless each minibatch has its full responsibility array written to and from disk when needed. (3) We proved in
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Sec. 3.1 that top-L selection is the optimal way to compute L−sparse responsibilities and monotonically improve
our training objective function. Neal and Hinton (1998) suggest this selection method only as a heuristic without
justification.

Expectation Truncation. When we undertook most of this research, we were unaware of a related method by
Lücke and Eggert (2010) called Expectation Truncation which constrains the approximate posterior probabilities
of discrete or multivariate binary variables to be L−sparse. Lücke and Eggert (2010) considered non-negative
matrix factorization and sparse coding problems. Later extensions applied this core algorithm to mixture-like
sprite models for cleaning images of text documents (Dai and Lücke, 2014) and spike-and-slab sparse coding
(Sheikh et al., 2014). Our work is the first to apply L−sparse ideas to mixture models and topic models.

The original Expectation Truncation algorithm (Lücke and Eggert, 2010, Alg. 1) expects a user-defined selection
function to identify the entries with non-zero responsibility for a specific observation. In practice, the selection
functions they suggest are chosen heuristically, such as the upper bound in Eq. 28 of (Lücke and Eggert, 2010).
The original authors freely admit these selection functions are not optimal and may not monotonically improve the
objective function (Lücke and Eggert, 2010, p. 2869). In contrast, we proved in Sec. 3.1 that top-L selection will
optimally improve our objective function.

One other advantage of our work over previous Expectation Truncation efforts are our thorough experiments ex-
ploring how different L values impact training speed and predictive power. Comparisons over a range of possible
L values on real datasets are lacking in Lücke and Eggert (2010) and other papers. Our key empirical insight is
that modest values like L = 4 are frequently better than L = 1, especially for topic models.

3.4 Scalabilty via minibatches

Stochastic variational inference (SVI). Introduced by Hoffman et al. (2010), SVI scales standard coordinate
ascent to large datasets by processing subsets of data at a time. Our proposed sparse local step fits easily into SVI.
At each iteration t, SVI performs the following steps: (1) sample a batch Dt ⊂ {x1, . . . xN} from the full dataset,
uniformly at random; (2) for each observation n in the batch, do a local step to update responsibilities r̂n given
fixed global parameters; (3) update the global parameters by stepping from their current values in the direction of
the natural gradient of the rescaled batch objective L(Dt). This procedure is guaranteed to reach a local optima of
L if the step size of the gradient update decays appropriately as t increases (Hoffman et al., 2013).

Incremental algorithms (MVI). Inspired by incremental EM (Neal and Hinton, 1998), Hughes and Sudderth
(2013) introduced memoized variational inference (MVI). The data is divided into a fixed set of B batches before
iterations begin. Each iteration t completes four steps: (1) select a single batch b to visit; (2) for each observation
n in this batch, compute optimal local responsibilities r̂n given fixed global parameters and summarize these into
sufficient statistics for batch b; (3) incrementally update s whole-dataset statistics given the new statistics for batch
b; (4) compute optimal global parameters given the whole-dataset statistics. The incremental update in step (3)
requires caching (or “memoizing”) the summary statistics in Eq. (7) at each batch. This algorithm has the same
per-iteration runtime as stochastic inference, but guarantees the monotonic increase of the objective L when the
local step has a closed-form solution like the mixture model. Its first pass through the entire dataset is equivalent
to streaming variational Bayes (Broderick et al., 2013).

4 Mixture Model Experiments

We evaluate dense and L−sparse mixture models for natural images, inspired by Zoran and Weiss (2012). We train
a model for 8x8 image patches taken from overlapping regular grids of stride 4 pixels. Each observation is a vector
xn ∈ R

64, preprocessed to remove its mean. We then apply a mixture model with zero-mean, full-covariance
Gaussian likelihood function F . We set concentration α = 10. To evaluate, we track the log-likelihood score

of heldout observations x′n under our trained model, defined as log p(x′n) = log
∑K

k=1 π̂kN (x′n|0, Σ̂k). Here,

π̂k = Eq[πk] and Σ̂k = Eq[Σk] are point estimates computed from our trained global parameters using standard
formulas. The function N is the probability density function of a multivariate normal.

Fig. 2 compares L−sparse implementations of SVI and MVI on 3.6 million patches from 400 images. The algo-
rithms process 100 minibatches each with N = 36,816 patches. We see the sparse methods consistently reach
good predictive scores 2-4 times faster than dense L = K runs do (note the log-scale of the time axis). Finally,
modestly sparse L = 16 runs often reach higher values of heldout likelihood than hard L = 1 runs, especially in
the K = 800 and K = 1600 plots for SVI (red).
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Fig. 2: Analysis of 3.6 million 8x8 pixel image patches using a zero-mean Gaussian mixture model trained by L−sparse
stochastic (SVI) and memoized (MVI) variational algorithms. We train on 400 total images processed 4 images at a time. Each
panel shows the heldout log likelihood score over time for training runs with various sparsity levels at a fixed number of clusters
K. Training time is plotted on log-scale.
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Fig. 3: Impact of sparsity-level L on speed and accuracy of training topic models. a: Comparison of the runtime costs for 10
complete passes through 7981 Wikipedia documents with K = 800 topics. Our L−sparse methods further show breakdown by
algorithm substeps. Text above each bar indicates the number of documents processed per second. b: Timings for the L−sparse
local step with restart proposals on 1000 NYTimes articles, using 100 iterations at each document. c: Timings for the L-sparse
summary step on 1000 NYTimes articles. d: Cumulative density function of variational distance between dense and L−sparse
document-topic distributions, across 1000 NYTimes documents. We define the empirical topic distribution of document d by
normalizing the count vector [Nd1 . . . NdK ].

5 Fast Local Step for Topic Models via Sparse Responsibilities

We now develop a sparse local step for topic models. Topic models (Blei, 2012) are hierarchical mixtures applied
to discrete data from D documents, x1, . . . xD. Let each document xd consist of observed word tokens from a
fixed vocabulary of V word types, though we could easily build a topic model for observations of any type (real,

discrete, etc.). Each document d containsNd observed word tokens xd = {xdn}
Nd

n=1, where token xdn ∈ {1, . . . V }
identifies the type of the n-th word.

The latent Dirichlet allocation (LDA) topic model (Blei et al., 2003) generates a document’s observations from
a mixture model with common topics {φ}Kk=1 but document-specific frequencies πd. Each topic φk ∼ DirV (λ̄),
where φkv is the probability of type v under topic k. The document-specific frequencies πd are drawn from a
symmetric Dirichlet DirK( α

K . . . α
K ), where α > 0 is a scalar. Assignments are drawn zdn ∼ CatK(πd), and then

the observed words are drawn xdn ∼ CatV (φzdn).

The goal of posterior inference is to estimate the common topics as well as the frequencies and assignments in any
document. The standard mean-field approximate posterior (Blei et al., 2003) is:

q(zd) =
∏Nd

n=1 CatK(zdn|r̂dn), q(πd) = DirK(πd|θ̂d), q(φ) =
∏K

k=1 DirV (φk|λ̂k). (9)

Under this factorization, we again set up a standard optimization objective L(x, r̂, θ̂, λ̂) as in Eq. (3). Complete
expressions are in Appendix C. We optimize this objective via coordinate ascent, alternating between local and
global steps. Our focus is the local step, which requires updating both the assignment factor q(zd|r̂d) and the

frequencies factor q(πd|θ̂d) for each document d. Next, we derive an interative update algorithm for estimating the
assignment factor q(zd) and the frequencies factor q(πd) for a document d. Alg. 2 lists the conventional algorithm
and our new sparse version.
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Document-topic update. Following (Blei et al., 2003), we have a closed-form update for each topic k: θ̂dk ←
Ndk(r̂d) + α/K. This assumes that responsibilities r̂d have been summarized into counts Ndk(r̂d) of the number

of tokens assigned to topic k in document d: Ndk ,
∑N

n=1 r̂dnk.

Responsibility update. As in (Blei et al., 2003), the optimal update for the dense responsibilities r̂dn for token
n has a closed form like the mixture model, but with document-specific weights:

r̂dn ← DENSERESPFROMWEIGHTS(Wdn), Wdnk , Eq[log πdk + log φkxdn
], (10)

Eq[log πdk] , ψ(θ̂dk)− ψ(
∑K

ℓ=1 θ̂dℓ).

We can incorporate our L-sparse constraint from Eq. (8) to obtain sparse rather than dense responsibilties. The
procedure TOPLRESPFROMWEIGHTS from Alg. 1 still provides the optimal solution.

Iterative joint update for dense case. Following standard practice for dense assignments (Blei et al., 2003),

we use a block-coordinate ascent algorithm that iteratively updates r̂d and θ̂d using the closed-form steps above.
To initialize the update cycle, we recommend setting the initial weights as if the document-topic frequencies are
uniform: Wdnk = Eq[log φkxdn

] + log 1
K . This lets the topic-word likelihoods drive the initial assignments. We

then alternate updates until either a maximum number of iterations is reached (typically 100) or the maximum
change in document-topic counts Ndk falls below a threshold (typically 0.05). Appendix D provides a detailed
algorithm. Fig. 3a compares the runtime cost of the local, summary, and global steps of the topic model, showing
that the local iterations dominate the overall cost.

Iterative joint update with sparsity. Our new L-sparse constraint on responsibilities leads to a fast local step
algorithm for topic models. This procedure has two primary advantages over the dense baseline. First, we use
TOPLRESPFROMWEIGHTS to update the per-token responsibilities r̂dn, resulting in faster updates. Second, we
further assume that once a topic’s massNdk decays near zero, it will never rise again. With this assumption, at every

iteration we identify the set of active topics (those with non-neglible mass) in the document: Ad , {k : Ndk > ǫ}.
Only these topics will have weight large enough to be chosen in the top L for any token. Thus, throughout local
iterations we consider only the active set of topics, reducing all steps from cost O(K) to cost O(|Ad|).

Discarding topics within a document when mass becomes very small is justified by previous empirical observations
of the “digamma problem” described in Mimno et al. (2012): for topics with negligible mass, the expected log prior
weight E[log πdk] becomes vanishingly small. For example, ψ( α

K ) ≈ −200 for α ≈ 0.5 and K ≈ 100, and gets
smaller as K increases. In practice, after the first few iterations the active set stabilizes and each token’s top L
topics rarely change while the relative responsibilities continue to improve. In this regime, we can reduce runtime
cost by avoiding selection altogether, instead just reweighting each token’s current set of top L topics. We perform
selection for the first 5 iterations and then only every 10 iterations, which yields large speedups without loss in
quality.

Fig. 3 compares the runtime of our sparse local step across values of sparsity-level L against a comparable im-
plementation of the standard dense algorithm. Fig. 3b shows that our L−sparse local step can be at least 3 times
faster when K = 400. Larger K values lead to even larger gains. Fig. 3c shows that sparsity improves the speed
of the summary step, though this step is less costly than the local step for topic models. Finally, Fig. 3d shows that
modest L = 8 sparsity yields document-topic distributions very close to those found by the dense local step, while
L = 1 is much coarser.

Restart proposals. In scalable applications, we assume that we cannot afford to store any document-specific

information between iterations. Thus, each time we visit a document d we must infer both q(πd|θ̂d) and q(zd|r̂d)

from scratch. This joint update is non-convex, and thus our recommended cold-start initialization for θ̂d is not
guaranteed to monotonically improve L across repeat visits to a document. However, even if we could store
document counts across iterations we find warm-starting often gets stuck in poor local optima (see Fig. 5 of
Appendix D). Instead, we combine cold-starting with restart proposals. Hughes et al. (2015) introduced restarts as

a post-processing step for the single document local iterations that results in solutions r̂d, θ̂d with better objective

function scores. Given some fixed point (r̂d, θ̂d), the restart proposal constructs a candidate (r̂′d, θ̂
′
d) by forcing

all responsibility mass on some active topic to zero and then running a few iterations forward. We accept the new
proposal if it improves the objective L. These proposals escape local optima by finding nearby solutions which
favor the prior’s bias toward sparse document-topic probabilities. They are frequently accepted in practice (40-80%
in a typical Wikipedia run), so we always include them in our sparse and dense local steps.
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Input:
α : document-topic smoothing scalar
{{Cvk}Kk=1}

V
v=1 : log prob. of word v in topic k

Cvk , Eq[log φkv]
{vdu, cdu}

U
u=1 : word type/count pairs for doc. d

Output:
r̂d : dense responsibilities for doc d

[θ̂d1 . . . θdK ] : topic pseudo-counts for doc d
1: def DENSESTEPFORDOC(C,α, vd, cd)
2: for u = 1, . . . U do
3: r̂du = DENSERESPFROMWEIGHTS(Cvdu

)

4: while not converged do
5: for k = 1, 2 . . . K do
6: Ndk =

∑

u cdur̂duk
7: Pdk = ψ(Ndk + α

K ) ⊲ Implicit θ̂d

8: for u = 1, 2 . . . U do
9: for k = 1, 2 . . . K do

10: Wduk = Cvduk + Pdk

11: r̂du =DENSERESPFROMWEIGHTS(Wdu)

12: for k = 1, 2 . . . K do
13: Ndk =

∑

u cdur̂duk
14: θ̂dk = Ndk + α

K

15: return r̂d, θ̂d

Input:
α : document-topic smoothing scalar
{{Cvk}Kk=1}

V
v=1 : log prob. of word v in topic k

Cvk , Eq[log φkv]
{vdu, cdu}

U
u=1 : word type/count pairs for doc. d

L : integer sparsity level
Output:

r̂d, id : L-sparse responsibilities and indices

[θ̂d1 . . . θdK ] : topic pseudo-counts for doc d
1: def LSPARSESTEPFORDOC(C,α, vd, cd, L)
2: for u = 1, . . . U do
3: r̂du, idu=TOPLRESPFROMW(Cvdu

, L)

4: for k = 1, . . . K do

5: Ndk =
∑U

u=1 cdur̂duk
6: Ad = {k ∈ [1,K] : Ndk > ǫ}
7: while not converged do
8: for k ∈ Ad do
9: Pdk = ψ(Ndk + α

K )

10: for u = 1, 2 . . . U do
11: for k ∈ Ad do
12: Wduk = Cvduk + Pdk

13: r̂du, idu =TOPLRESPFROMW(Wdu, L)

14: for k ∈ Ad do

15: Ndk =
∑U

u=1 cdur̂duk
16: Ad = {k ∈ Ad : Ndk > ǫ}

17: for k = 1, 2 . . . K do

18: θ̂dk = Ndk + α
K

19: return r̂d, id, θ̂d

Alg. 2: Algorithms for computing the per-unique-token responsibilities {r̂du}
Ud

u=1
and topic pseudocounts θ̂d for a single

document d given a fixed set of K topics. Left: In the standard dense algorithm, each step scales linearly with the number
of total topics K, regardless of how many topics are used in the document. Right: In our L−sparse algorithm, forcing each
observation to use at most L topics and tracking the active topics in a document Ad leads to update steps that scale linearly
with the number of active topics |Ad|, which can be much less than the total number of topics K.

Related work. MCMC methods specialized to topic models of text data can exploit sparsity for huge speed
gains. SparseLDA (Yao et al., 2009) is a clever decomposition of the Gibbs conditional distribution to make each
per-token assignment step cost less than O(K). AliasLDA (Li et al., 2014) and LightLDA (Yuan et al., 2015) both
further improve this to amortizedO(1). These methods are still limited to hard assignments and are only applicable
to discrete data. In contrast, our approach allows expressive intermediate sparsity and can apply to a broader family
of mixtures and topic models for real-valued data.

More recently, several efforts have used MCMC samplers to approximate the local step within a larger variational
algorithm (Mimno et al., 2012; Wang and Blei, 2012). They estimate an approximate posterior q(zd) by averaging
over many samples, where each sample is an L = 1 hard assignment. The number of finite samples S needs to
be chosen to balance accuracy and speed. In contrast, our sparsity-level L provides more intuitive control over
approximation accuracy and optimizes L exactly, not just in expectation.

6 Topic Model Experiments

We compare our L−sparse implementations of MVI and SVI to external baselines: SparseLDA (Yao et al., 2009),
a fast implementation of standard Gibbs sampling (Griffiths and Steyvers, 2004); and SVIGibbs (Mimno et al.,
2012), a stochastic variational method that uses Gibbs sampling to approximate local gradients. These algorithms
use Java code from Mallet (McCallum, 2002). We also compare to the public C++ implementation of LightLDA
(Yuan et al., 2015). External methods use their default initialization, while we sample K diverse documents using
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the Bregman divergence extension (Ackermann and Blömer, 2009) of k-means++ (Arthur and Vassilvitskii, 2007)
to initialize our approximate topic-word posterior q(φ).

For our methods, we explore several values of sparsity-level L. LightLDA and SparseLDA have no tunable sparsity
parameters. SVIGibbs allows specifying the number of samples S used to approximate q(zd). We consider S =
{5, 10}, always discarding half of these samples as burn-in. For all methods, we set document-topic smoothing
α = 0.5 and topic-word smoothing λ̄ = 0.1. We set the stochastic learning rate at iteration t to ρt = (δ + t)−κ.
We use grid search to find the best heldout score on validation data, considering delay δ ∈ {1, 10} and decay
κ ∈ {0.55, 0.65}.

Fig. 4 compares these methods on 3 datasets: 1392 NIPS articles, 7961 Wikipedia articles, and 1.8 million New
York Times articles. Each curve represents the best of many random initializations. Following Wang et al. (2011),
we evaluate via heldout likelihoods via a document completion task. Given a test document xd, we divide its
words at random by type into two pieces: 80% in xAd and 20% in xBd . We use set A to estimate document-topic

probabilities π̂d, and then evaluate this estimate on set B by computing log p(xBd |π̂d, φ̂). See supplement for details.
Across all datasets, our conclusions are:

Moderate sparsity tends to be best. Throughout Fig. 4, we see that runs with sparsity-level L = 8 under
both memoized and stochastic algorithms converge several times faster than L = K, but yield indistinguishable
predictions. For example, on Wikipedia with K = 800 both MVI and SVI plateau after 200 seconds with L = 8,
but require over 1000 seconds for best performance with L = K.

Hard assignments can fail catastrophically. We suspect that L = 1 is too coarse to accurately capture multiple
senses of vocabulary words, instead favoring poor local optima where each word is attracted to a single best
topic without regard for other words in the document. In practice, L = 1 may either plateau early at noticeably
worse performance (e.g., NIPS) or fall into progressively worse local optima (e.g., Wiki). This failure mode can
occur because MVI and SVI for topic models both re-estimate q(zd) and q(πd) from scratch each time we visit a
document.

Baselines converge slowly. Throughout Fig. 4, few runs of SparseLDA or SVIGibbs reaches competitive predic-
tions in the allowed time limit (3 hours for NIPS and Wiki, 2 days for NYTimes). SVIGibbs benefits from using
S = 10 instead of S = 5 samples only on NYTimes. More than 10 samples did not improve performance further.
As expected, LightLDA has higher raw throughput than our L−sparse MVI or SVI methods, and for small datasets
eventually makes slightly better predictions when K = 200. However, across all K values we find our L−sparse
methods reach competitive values faster, especially on the large NYTimes dataset. For large K we find LightLDA
never catches up in the allotted time. Note that LightLDA’s speed comes from a Metropolis-Hastings proposal
that is highly specialized to topic models of discrete data, while other methods (including our own) are broadly
applicable to cluster-based models with non-multinomial likelihoods.

7 Conclusion

We have introduced a simple sparsity constraint for approximate posteriors which enjoys faster training times, equal
or better heldout predictions, and intuitive interpretation. Our algorithms can be dropped-in to any ML, MAP, or
full-posterior variational clustering objective and are easy to parallelize across minibatches. Unlike previous efforts
encouraging sparsity such as Sparse EM (Neal and Hinton, 1998) or Expectation Truncation (Lücke and Eggert,
2010), we have procedures that easily scale to millions of examples without prohibitive storage costs, we present
proof that our chosen top−L selection procedure is optimal, and we have done rigorous experiments demonstrating
that often modest values of L = 4 or L = 8 are much better than L = 1.

We have released Python code with fast C++ subroutines to encourage reuse by practioners. We anticipate further
research in adapting L > 1 sparsity to sequential models like HMMs, to structured variational approximations, to
Bayesian nonparametric models with adaptive truncations (Hughes and Sudderth, 2013), and to fast methods like
KD-trees for computing cluster weights (Moore, 1999).
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Fig. 4: Analysis of 1392 NIPS articles (top row), 7961 Wikipedia articles (middle), and 1.8 million New York Times articles
(bottom). We use 200 batches for NY Times and 5 batches otherwise. Each panel shows for a single K value how heldout
likelihood (higher is better) changes over time for sparse and dense versions of our algorithms and external baselines. Training
time is plotted on log-scale.
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A Mean-field variational for the mixture model

A.1 Generative model

Global parameters:

p(π) = DirK(π| αK . . . α
K ) (11)

p(φ) =
∏K

k=1 P(φk|λ̄) (12)

where P is a conjugate prior density in the exponential family.

Local assignments z and observed data x:

p(z|π) =
∏N

n=1 CatK(zn|π1, . . . πK) (13)

p(x|z, φ) =
∏N

n=1 F(xn|φzn) (14)

where F is any likelihood density in the exponential family, with conjugate prior P .

A.2 Assumed mean-field approximate posterior

Approximate posteriors for global parameters:

q(π|θ̂) = DirK(θ̂1 . . . θ̂K) (15)

q(φ|λ̂) =
∏K

k=1 P(φk|λ̂k) (16)

Approximate posterior for local assignment:

q(z|r̂) =
∏N

n=1 CatK(zn|r̂n1, . . . r̂nK), (17)

A.3 Evidence lower-bound objective function

L(x, r̂, θ̂, λ̂) = log p(x|α, λ̄)− KL(q||p) (18)

= Eq[log p(x, z, π, φ)− log q(z, π, φ)]

= Ldata(x, r̂, λ̄) + Lentropy(r̂) + Lalloc(r̂, θ̂)

where we have defined several iterpretable terms which separate the influence of the different free variational
parameters.

Lalloc(r̂, θ̂) , Eq(π|θ̂)q(z|r̂)[log p(z) + log
p(π)

q(π)
] (19)

Lentropy(r̂) , −Eq(z|r̂)[log q(z)] (20)

Ldata(x, r̂, λ̂) , Eq(z|r̂)q(φ|λ̂)[log p(x|z, φ) + log
p(φ)

q(φ)
] (21)

Mixture allocation term. For the mixture model, we can expand the expectation defining Lalloc and simplify for
the following closed-form function:

Lalloc(r̂, θ̂) = cDir([
α
K . . . α

K ])− cDir([θ̂1 . . . θ̂K ]) (22)

+
K
∑

k=1

(Nk(r̂) +
α
K − θ̂k)

[

ψ(θ̂k)− ψ(
∑K

ℓ=1 θ̂ℓ)
]

where ψ(·) is the digamma function and cDir(·) is the log cumulant function, also called the log normalization
constant, of the Dirichlet distribution:

cDir([a1, . . . aK ]) , log Γ(
∑K

k=1 ak)−
∑K

k=1 log Γ(ak). (23)

Entropy term. The entropy of the approximate posterior for cluster assignments is:

Lentropy(r̂) = −
∑N

n=1

∑K
k=1 r̂nk log r̂nk (24)

Data term. Evaluating the data term Ldata requires a particular choice for the likelihood F and prior density P.
We discuss several cases in Sec. B
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B Variational methods for data generated by the exponential family

B.1 Zero-mean Gaussian likelihood and Wishart prior

Zero-mean Gaussian likelihood. Each observed data vector xn is a real vector of size D. We assume each
cluster k has a precision matrix parameter Φk which is symmetric and positive definite. The log likelihood of each
observation is then:

logF (xn|Φk) = logN (xn|0,Φ
−1
k ) (25)

= −
D

2
log[2π] +

1

2
log |Φk| −

1

2
tr(Φkxnx

T
n ) (26)

Wishart prior. The Wishart prior is defined by a positive real ν̄, which can be interpreted as a pseudo-count of
prior strength or degrees-of-freedom, and Λ̄, a D ×D symmetric positive matrix. The log density of the Wishart
prior is given by:

log P(Φk|ν̄, Λ̄) = cWish(ν̄, Λ̄) +
ν̄ −D − 1

2
log |Φk| −

1

2
tr(ΦkΛ̄

−1) (27)

where the cumulant function is

cWish(ν,Λ) , −
νD

2
log 2− log ΓD

(ν

2

)

+
ν

2
log
∣

∣

∣
Λ−1

∣

∣

∣
(28)

where ΓD(a) is the multivariate Gamma function, defined as ΓD(a) = πD(D−1)/4
∏D

d=1 Γ(a+
1−d
2 ).

Approximate variational posterior

q(Φ|ν̂, Λ̂) =
K
∏

k=1

P(Φk|ν̂k, Λ̂k) (29)

Evaluating the data objective function. First, we define sufficient statistic functions for each cluster k:

Nk(r̂) =

N
∑

n=1

r̂nk Sk(x, r̂) =

N
∑

n=1

r̂nkxnx
T
n (30)

Then, we can write the data objective as

Ldata(x, r̂, ν̂, Λ̂) , Eq

[

log p(x|z,Φ) + log
p(Φ)

q(Φ)

]

(31)

=

N
∑

n=1

K
∑

k=1

Eq(z)[δk(zn)]Eq(Φ)[log p(xn|Φk)] +

K
∑

k=1

Eq(Φ)[log
p(Φk)

q(Φk)
]

= −
ND

2
log[2π] +

K
∑

k=1

cWish(ν̄, Λ̄)− cWish(ν̂k, Λ̂k)

+

K
∑

k=1

(Nk(r̂) + ν̄ − ν̂k)Eq[cF (Φk)]

+

K
∑

k=1

(Sk(x, r̂) + Λ̄− Λ̂k)Eq[Φk]

B.2 Multinomial likelihood and Dirichlet prior

Multinomial likelihood. Each observation xn ∈ {1, . . . V } indicates a single word in a vocabulary of size V .

log F(xn|φk) =
V
∑

v=1

δv(xn) log φkv (32)

The parameter φk is a non-negative vector of V entries that sums to one.
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Dirichlet prior. We assume φk has a symmetric Dirichlet prior with positive scalar parameter λ̄:

log P(φk|λ̄) = cDir([λ̄ . . . λ̄]) +
V
∑

v=1

(λ̄− 1) log φkv (33)

Approximate variational posterior. We assume that q(φk) is a Dirichlet distribution with parameter λ̂k:

q(φ|λ̂) =
∏K

k=1 DirV (φk|λ̂1, . . . λ̂V ) (34)

Evaluating the data objective function.

Ldata(x, r̂, λ̂) , Eq[log p(x|z, φ) + log p(φ|λ̄)

q(φ|λ̂)
(35)

=
K
∑

k=1

cDir(λ̄)− cDir(λ̂k)

+

K
∑

k=1

V
∑

v=1

(Skv + λ̄− λ̂kv)E[log φkv]

where cD(·) is the log cumulant function of the Dirichlet defined above and Skv counts the total number of words
of type v assigned to topic k.

C Mean-field variational for the LDA topic model

C.1 Observed data

The LDA topic model is a hierarchical mixture applied to data from D documents, x1, . . . xD. Let each document
xd consist of observed word tokens from a fixed vocabulary of V word types, though we could easily build a topic
model for observations of any type (real, discrete, etc.). We represent xd in two ways: First, as a dense list of the

Nd word tokens in document d: xd = {xdn}
Nd

n=1. Here token xdn ∈ {1, . . . V } identifies the type of the n-th word.

Second, we can use a memory-saving sparse histogram representation: xd = {vdu, cdu}
Ud

u=1, where u indexes the
set of word types that appear at least once in the document, vdu ∈ {1, . . . V } gives the integer id of word type u,

and cdu ≥ 1 is the count of word type vdu in document d. By definition,
∑Ud

u=1 cdu =
∑Nd

n=1 xdn = Nd.

C.2 Generative model

The Latent Dirichlet Allocation (LDA) topic model generates a document’s observations from a mixture model
with common topics {φ}Kk=1 but document-specific frequencies πd.

The model consists of several latent variables.

Model for global parameters: First, we have global topic-word probabilities φ = {φk}Kk=1. Each φk is a non-
negative vector of length V (number of words in the vocabulary) that sums to one, such that φkv is the probability
of type v under topic k.

p(φ|λ̄) =
K
∏

k=1

DirV (φk|λ̄) (36)

Model for local documents: Next, each document d contains two local random variables: a document-specific

frequency vector πd and token specific assignments zd = {zd}
Nd

n=1. These are generated as follows:

p(π|α) =
∏D

d=1 DirK(πd|
α
K . . . α

K ) (37)

p(z|π) =
∏D

d=1

∏Nd

n=1 CatK(zdn|πd) (38)

Finally, each observed word token xdn is drawn from its assigned topic-word distribution:

p(x|z, φ) =
∏D

d=1

∏Nd

n=1 CatV (xdn|φzdn) (39)
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C.3 Assumed mean-field approximate posterior

The goal of posterior inference is to estimate the common topics as well as the frequencies and assignments in any
document. The standard mean-field approximate posterior over these quantities is specified by:

q(zd) =
∏Nd

n=1 CatK(zdn|r̂dn1, . . . r̂dnK), (40)

q(πd) = DirK(πd|θ̂d1, . . . θ̂dK),

q(φ) =
∏K

k=1 DirV (φk|λ̂k1, . . . λ̂kV ).

C.4 Evidence lower-bound objective function

Under this factorized approximate posterior, we can again set up a variational optimization objective:

L(x, r̂, θ̂, λ̂) = log p(x)− KL(q||p) (41)

= Eq[log p(x, z, π, φ)− log q(z, π, φ)]

Just like the mixture model, we can rewrite the terms in this objective as

L(x, r̂, θ̂, λ̂) , Ldata(x, r̂) + Lentropy(r̂) + Lalloc(r̂, θ̂) (42)

Ldata , Eq[log p(x|z, φ) + log
p(φ)

q(φ)
] (43)

Lentropy(r̂) , −Eq[log q(z)] (44)

Lalloc , Eq[log p(z|π) + log
p(π)

q(π)
] (45)

Entropy term. The entropy of the assignments term is simple to compute:

Lentropy = −
D
∑

d=1

Nd
∑

n=1

r̂dnk log r̂dnk (46)

This is needed purely for computing the value of the objective function. No parameter updates require this entropy.
However, because tracking the objective is useful for diagnosing performance in our SVI and MVI algorithms, we
do compute this entropy at every iteration.

Allocation term. After expanding the required expectations and simplifying, the term representing the allocation
of topics to documents becomes

Lalloc(r̂, θ̂) =

D
∑

d=1

(

cDir([
α

K
. . .

α

K
])− cDir([θ̂d1 . . . θ̂dK ]) (47)

+
K
∑

k=1

[Ndk(r̂d) +
α

K
− θ̂dk][ψ(θ̂dk)− ψ(

∑K
ℓ=1 θ̂dℓ)]

)

(48)

where we have defined the normalization function cDir of the Dirichlet distribution as:

cDir([a1 . . . aK ]) , log Γ(
K
∑

ℓ=1

aℓ)−
K
∑

ℓ=1

log Γ(aℓ) (49)

Data term. The data term expectations are described in Sec. B. See especially the section on multinomial likeli-
hoods.

D Algorithms for Topic Model Local Step via Sparse Responsibilities

As explained in the main paper, coordinate ascent algorithms for the LDA variational objective require the local step

for each document d to be iterative, alternating between updating q(zd|r̂d) and updating q(πd|θ̂d) until convergence.
Alg. 2 in the main paper outlines the exact procedures required by the conventional dense algorithm and our new
sparse version, presenting the two methods side-by-side to aid comparison.
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D.1 Details of updates for responsibilities.

As explained in the main paper, under the usual dense representation, the optimal update for the assignment vector
of token n has a closed form like the mixture model, but with document-specific weights which depend on the

document-topic pseudocounts θ̂d:

r̂dn = DENSERESPFROMWEIGHTS([Wdn1 . . .Wdnk]), (50)

Wdnk(xdn, θ̂, λ̂) , Eq[log πdk + log φkxdn
],

Eq[log πdk] , ψ(θ̂dk)− ψ(
∑K

ℓ=1 θ̂dℓ).

We can easily incorporate our sparsity-level constraint to enforce at most L non-zero entries in r̂dn. In this case, the
optimal L-sparse vector r̂d can still be found via the TOPLRESPFROMWEIGHTS procedure from the main paper.

Sharing parameters by word type. Naively, tracking the assignments for document d requires explicitly rep-
resenting a separate K-dimensional distribution for each of the Nd tokens. Howeveir, we can save memory and
runtime by recognizing that for a token with word type v, the optimal value of Eq. (50) will be the same for all
tokens in the document with the same type. We can thus share parameters with no loss in representational power,

requiring Ud separate K-dimensional distributions, where r̂dn , r̂dudn
.

D.2 Iterative single-document algorithm for dense responsibilities.

The procedure DENSESTEPFORDOC in Alg. 2 provides the complete procedure needed to update r̂d, θ̂d to a local

optima of L given the global hyperparameter α > 0 and global topic-word approximate posteriors q(φk|λ̂k) for
each topic k.

Following standard practice for dense assignments, DENSESTEPFORDOC is a block-coordinate ascent algorithm

that iteratively loops between updating r̂d and θ̂d. When computing the log posterior weightsWduk, two easy speed-
ups are possible: First, we need only evaluate Cvk = Eq[log φkv] once for each word type v and topic k and reuse

the value across iterations. Second, we can directly compute the effective log prior probability Pdk , Eq[log πdk]

during iterations, and instantiate θ̂ after the algorithm converges.

To initialize the update cycle for a document, we recommend visiting each token n and updating it with initial
weight W ′

dnk = Eq[log φkxdn
]. This essentially assumes the document-topic frequency vector πd is known to be

uniform, which is reasonable. This lets the topic-word likelihoods drive the initial assignments. We then alternate
between updates until either a maximum number of iterations is reached (typically 100) or the maximum change
of all document-topic counts Ndk falls below a threshold (typically 0.05).

Each iteration updates Pdk with cost O(K), and then performs Ud evaluations of DENSERESPFROMWEIGHTS,
each with dense cost O(K). On most datasets, we find these local iterations are by far the dominant computational
cost.

D.3 Iterative single-document algorithm for sparse responsibilities.

The procedure LSPARSESTEPFORDOC in Alg. 2 provides the complete procedure needed to update r̂d, θ̂d to a
local optima of L under the addditional constraint that each token’s responsibility vector has at most L non-zero
entries, As discussed in the main paper, throughout this algorithm we combine L−sparse representation of the
responsibilities with the further assumption that once a topic’s mass Ndk decays near zero, it will never rise again.
With this assumption, at every iteration we identify the set of active topics (those with non-neglible mass) in the

document: Ad , {k : Ndk > ǫ}. Only these topics will have weight large enough to be chosen in the top L for any
token. Thus, throughout TOPLRESPFORDOC we need only loop over the active set. Each iteration costs O(|Ad|)
instead of O(K).

Discarding topics whose mass within a document drops below ǫ is justified by previous empirical observations of
the so-called “digamma problem” described in Mimno et al. (2012): for topics with negligible mass, the expected
log probability term becomes vanishingly small. For example, ψ( α

K ) ≈ −200 for α ≈ 0.5 and K ≈ 100, and gets
smaller as K increases.

In practice, after the first few iterations the active set stabilizes and each token’s topL topics rarely change while the
relative responsibilities continue to improve. In this regime, we can amortize the cost of LSPARSESTEPFORDOC

by avoiding some selection steps altogether, instead treating the previously determined top L indices for each
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Fig. 5: Comparison of warm start (using counts stored from previous visits to each document) and cold start (initializing weights
from scratch as recommended in the main paper) for dense and sparse local steps for K = 400 on a variety of datasets. With
restart proposals enabled (restartLP=1, red curves), cold start always does as good or better than warm starts.

token as fixed and simply reweighting the responsibility values at those tokens. We perform selection for the first
5 iterations and then only every 10 iterations, which yields large speedups without loss in solution quality.

D.4 Initialization and Restart proposals for the local step

In the main paper, we advocate a “cold start” strategy for handling repeat visits to a document. This means we
do not store any document-specific information, instead initializing weights from scratch as detailed in Alg. 2.
Not only is this more scalable because it avoids storage costs for huge corpuses, but we find that this allows us to
reach much higher objective values L than the alternative “warm start” strategy, which would store document-topic
counts from previous visits and use these to jumpstart the next local step at each chosen document. Fig. 5 shows
that while warm starting does allow more complete passes through the dataset (laps) completed, it tends to get
stuck in worse local optima.

The key to making cold start work in practice is using the restart proposals from (Hughes et al., 2015). Without
these, Fig. 5 shows that the L value can decrease badly over time, indicating the inference gets stuck in progres-
sively worse local optima. However, with restarts enabled (red curves), we find our cold start procedure to be much
more reliable.

E Heldout likelihood calculation for topic model experiments

In the main paper’s experiments, we evaluate all topic model training algorithms by computing heldout likelihood
via a document completion task (Wang et al., 2011). Given a heldout document xd, we divide its words at random
by type into two pieces: 80% in xAd and 20% in xBd . We use subset A to estimate the document-specific probabilities
π̂d, and then evaluate the predictions of this estimate on the remaining words in B. Throughout, we fix point

estimates for each topic k to the trained posterior mean φ̂k = Eq[φk]. Across many heldout documents, we
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measure the log-likelihood:

score(xA, xB , φ̂) =

∑

d

∑|xB

d
|

n=1 log
∑

k π̂dkφ̂kxB

dn
∑

d |x
B
d |

For all algorithms, we fix a point estimate of topics φ̂ from training and then estimate π̂d in the same way: finding
the optimal q(πA

d ) and q(zAd ) for the words in the first piece xAd by using DENSERESPFORDOC. Finally, we take

π̂d = Eq[π
A
d ] and compute the heldout likelihood of xBd .

E.1 Dataset statistics

Our NIPS dataset consists of 1392 training documents, 100 validation, and 248 test documents. The vocabulary
size is 13,649.

Our Wikipedia dataset has 7961 training documents, 500 validation, and 500 test documents. The vocabulary size
is 6130.

Our NYTimes dataset has 1816800 training documents, 500 validation, and 500 test documents. The vocabulary
size is 8000.

F Top L Selection Algorithms

In this section, we discuss how the SELECTTOPL algorithm introduced in the main paper would be implemented
in practice, since selection algorithms are often unknown to a machine learning audience. Remember that SELECT-
TOPL identifies the top L indices of a provided array of floating-point values.

As part of this supplement, we have released an example code file SelectTopL.cpp whose complete source is in
Sec. G . This file offers a simple demo of using selection algorithms to find the top L entries of small, randomly
generated vectors. Below, we first discuss how to execute and interpret the results of this demo program, and then
offer a detailed-walk through of the actual code.

F.1 Using the SelectTopL code

The provided C++ file called SelectTopL.cpp can be compiled and run using modern C++ compilers, such as the
Gnu compiler g++. Our code does require the Eigen library for vectors and matrices, which can be found online at
http://eigen.tuxfamily.org.

Compiling. At a standard terminal prompt, we compile the code into an executable.

g++ -I/path/to/eigen/ -O3 SelectTopL.cpp -o SelectTopLDemo

Running. We can then run the executable.

./SelectTopLDemo

The demo executable will perform several sequential tasks:

1. Create an unsorted, random weight vector of size K = 10. Print the indices and values.

2. Sort the vector in descending order, in place. Print the resulting vector’s original indices and correspond-
ing values.

3. Call SelectTopL(1), which will place the largest single entry of the vector in the first position. Print the
full vector and corresponding indices.

4. Repeat calls to SelectTopL(L), for each value of L = {2, 3, . . . 9}.

Expected output. The following text will be printed to stdout:

seed : 555542
C r e a t e d random w e i g h t v e c t o r o f s i z e 10
i n d s : 0 1 2 3 4 5 6 7 8 9
d a t a : 0 . 3 5 0 . 7 7 0 . 4 9 0 . 4 1 0 . 5 8 0 . 0 2 0 . 2 6 0 . 8 6 0 . 6 8 0 . 1 6
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C a l l i n g s o r t I n d i c e s ( )
i n d s : 7 1 8 4 2 3 0 6 9 5
d a t a : 0 . 8 6 0 . 7 7 0 . 6 8 0 . 5 8 0 . 4 9 0 . 4 1 0 . 3 5 0 . 2 6 0 . 1 6 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
i n d s : 0 1 2 3 4 5 6 7 8 9
d a t a : 0 . 3 5 0 . 7 7 0 . 4 9 0 . 4 1 0 . 5 8 0 . 0 2 0 . 2 6 0 . 8 6 0 . 6 8 0 . 1 6
C a l l i n g s e l e c t T o p L I n d i c e s ( 1 )
i n d s : 7 1 8 4 3 9 6 2 0 5
d a t a : 0 . 8 6 0 . 7 7 0 . 6 8 0 . 5 8 0 . 4 1 0 . 1 6 0 . 2 6 0 . 4 9 0 . 3 5 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 2 )
i n d s : 7 1 8 4 3 9 6 2 0 5
d a t a : 0 . 8 6 0 . 7 7 0 . 6 8 0 . 5 8 0 . 4 1 0 . 1 6 0 . 2 6 0 . 4 9 0 . 3 5 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 3 )
i n d s : 7 1 8 4 3 9 6 2 0 5
d a t a : 0 . 8 6 0 . 7 7 0 . 6 8 0 . 5 8 0 . 4 1 0 . 1 6 0 . 2 6 0 . 4 9 0 . 3 5 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 4 )
i n d s : 7 1 8 4 3 9 6 2 0 5
d a t a : 0 . 8 6 0 . 7 7 0 . 6 8 0 . 5 8 0 . 4 1 0 . 1 6 0 . 2 6 0 . 4 9 0 . 3 5 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 5 )
i n d s : 8 1 7 4 2 3 0 6 9 5
d a t a : 0 . 6 8 0 . 7 7 0 . 8 6 0 . 5 8 0 . 4 9 0 . 4 1 0 . 3 5 0 . 2 6 0 . 1 6 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 6 )
i n d s : 8 1 7 4 2 3 0 6 9 5
d a t a : 0 . 6 8 0 . 7 7 0 . 8 6 0 . 5 8 0 . 4 9 0 . 4 1 0 . 3 5 0 . 2 6 0 . 1 6 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 7 )
i n d s : 8 1 7 4 2 3 0 6 9 5
d a t a : 0 . 6 8 0 . 7 7 0 . 8 6 0 . 5 8 0 . 4 9 0 . 4 1 0 . 3 5 0 . 2 6 0 . 1 6 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 8 )
i n d s : 8 1 7 4 3 0 2 6 9 5
d a t a : 0 . 6 8 0 . 7 7 0 . 8 6 0 . 5 8 0 . 4 1 0 . 3 5 0 . 4 9 0 . 2 6 0 . 1 6 0 . 0 2
R e s e t t o o r i g i n a l o r d e r
C a l l i n g s e l e c t T o p L I n d i c e s ( 9 )
i n d s : 8 1 7 4 3 0 2 6 9 5
d a t a : 0 . 6 8 0 . 7 7 0 . 8 6 0 . 5 8 0 . 4 1 0 . 3 5 0 . 4 9 0 . 2 6 0 . 1 6 0 . 0 2
R e s e t t o o r i g i n a l o r d e r

F.2 Remark: Selection is different than sorting

The SELECTTOPL procedure is quite different from sorting the array completely and then just returning the top
L values. Instead, it uses a recursive algorithm whose invariant condition is the following: given an array with
positions {0, 1, . . . K−1}, guarantee that any value in the first L positions {0, 1, . . . L−1} is larger than any value
in the remaining positions {L,L+ 1, . . . K − 1} of the array.

It sometimes happens that the first L values turn out sorted, but there is no guarantee that they will be. For example,
in the output above, we see that after calling selectTopLIndices(9), the first three indices are not strictly in
sorted order.

F.3 Detailed walk-through

Our implementation defines a simple struct to represent the weight vector data and the corresponding integer
indices side-by-side.

struct ArrayWithIndices {
double* xptr; // data array
int* iptr; // int indices of data array
int size; // length of data array
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...
}

We can construct our struct by providing a pointer to a weight vector of size K. The constructor then creates an int
array of indices from 0, 1, . . . K − 1.

// Constructor
ArrayWithIndices(double* xptrIN, int sizeIN) {

xptr = xptrIN;
size = sizeIN;
iptr = new int[size];
fillIndicesInIncreasingOrder(size);

}

The helper method fillIndicesInIncreasingOrder simply edits the indices array in-place.

// Helper method: reset iptr array to 0, 1, ... K-1
void fillIndicesInIncreasingOrder(int size) {

for (int i = 0; i < size; i++) {
iptr[i] = i;

}
}

Sorting indices. To understand selection, we can scaffold by first understanding how to sort this struct. We can
sort the indices from largest to smallest by value using the sortIndices method of our struct. This is a thin
wrapper around the sort function of the standard library. We provide pointers to the start and end of the region of
the array we wish to sort, as well as a custom comparison operation, since we want to sort by the values in xptr,
rather than iptr. After executing this method, we are guaranteed that the array region provided is sorted according
to the provided comparison.

// Sort indices from largest to smallest data value
void sortIndices() {

fillIndicesInIncreasingOrder(this->size);
std::sort(

this->iptr,
this->iptr + this->size,
GreaterThanComparisonByDataValue(this->xptr)
);

}

Note that before calling sort, we quickly make sure that the indices are in their default, increasing order. Otherwise,
if we called sortIndices twice in a row, we get different results each time because the internal array of indices
would be out-of-order the second time.

Custom comparison operator. A simple struct defines the custom comparison. Given two indices i and j, we
return true if the i-th element of the data array is larger than the j-th element, and false otherwise. No memory
allocation happens here, we’re just passing pointers around.

struct GreaterThanComparisonByDataValue {
const double* xptr;

GreaterThanComparisonByDataValue(const double * xptrIN) {
xptr = xptrIN;

}

bool operator()(int i, int j) {
return xptr[i] > xptr[j];

}
};
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Selecting the top L indices. Just like sorting, our selection algorithm is a simple call to a standard library
function: nth_element (Musser, 1997). This is an introspective selection function which will rearrange the
elements of a provided array region [0, K) in-place. The function guarantees that for any i ∈ [0, L− 1] in the front
region and any j ∈ [L,K − 1] in the remaining region, the i-th element of the resulting array will be larger than
the j-th element. Again, we provide a custom comparison function so that we can rearrange the indices but make
comparisons by the data value of the weights.

void selectTopLIndices(int L) {
assert(L > 0);
assert(L <= this->size);
fillIndicesInIncreasingOrder(this->size);
std::nth_element(

this->iptr + 0, // region starts at index 0
this->iptr + L - 1, // partition entries [0,L-1] from [L, end]
this->iptr + this->size, // region stops at last index
GreaterThanComparisonByDataValue(this->xptr)
);

}
}

G Complete source code for SelectTopL.cpp

# i n c l u d e <math . h>
# i n c l u d e < a s s e r t . h>
# i n c l u d e < s t d i o . h>
# i n c l u d e <t i m e . h>
# i n c l u d e " Eigen / Dense "

u s i n g namespace s t d ;
u s i n g namespace Eigen ;

/ / ======================================================== D e f i n e t y p e s
/ / ========================================================
/ / Simple names f o r a r r a y t y p e s
t y p e d e f Array < double , Dynamic , Dynamic , RowMajor> Arr2D_d ;
t y p e d e f Array < double , 1 , Dynamic , RowMajor> Arr1D_d ;
t y p e d e f Array < i n t , 1 , Dynamic , RowMajor> Arr1D_i ;

/ / S imple names f o r a r r a y t y p e s wi th e x t e r n a l l y a l l o c a t e d memory
t y p e d e f Map<Arr2D_d > ExtArr2D_d ;
t y p e d e f Map<Arr1D_d > ExtArr1D_d ;
t y p e d e f Map<Arr1D_i > ExtArr1D_i ;

/ / ======================================================== D e f i n e c o m p a r a t o r
s t r u c t Grea te rThanCompar i sonByDataValue {

c o n s t d o u b l e * x p t r ;

Grea te rThanCompar i sonByDataValue ( c o n s t d o u b l e * x p t r I N ) {
x p t r = x p t r I N ;

}

boo l o p e r a t o r ( ) ( i n t i , i n t j ) {
r e t u r n x p t r [ i ] > x p t r [ j ] ;

}
} ;

s t r u c t A r r a y W i t h I n d i c e s {
d o u b l e * x p t r ; / / d a t a a r r a y
i n t * i p t r ; / / i n t i n d i c e s o f d a t a a r r a y
i n t s i z e ; / / t o t a l s i z e o f d a t a a r r a y

/ / C o n s t r u c t o r
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A r r a y W i t h I n d i c e s ( d o u b l e * xp t r IN , i n t s i z e I N ) {
x p t r = x p t r I N ;
s i z e = s i z e I N ;
i p t r = new i n t [ s i z e ] ;
f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( s i z e ) ;

}

/ / H e l p e r method : r e s e t i p t r a r r a y t o 0 , 1 , 2 , 3 , . . . s i z e −1
vo id f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( i n t s i z e ) {

f o r ( i n t i = 0 ; i < s i z e ; i ++) {
i p t r [ i ] = i ;

}
}

/ / H e l p e r method : r e s e t i p t r a r r a y t o 0 , 1 , 2 , 3 , . . . t h i s −>s i z e −1
vo id f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( ) {

t h i s −> f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( t h i s −> s i z e ) ;
}

/ / S o r t t h e i n d i c e s from l a r g e s t t o s m a l l e s t d a t a v a l u e
vo id s o r t I n d i c e s ( ) {

f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( t h i s −> s i z e ) ;
s t d : : s o r t (

t h i s −> i p t r ,
t h i s −> i p t r + t h i s −>s i z e ,
Grea te rThanCompar i sonByDataValue ( t h i s −>x p t r )
) ;

}

/ / R e a r r a n g e i n d i c e s so f i r s t L v a l u e s a r e b i g g e r t h a n r e m a i n i n g v a l u e s
/ / No g u a r a n t e e d o r d e r i n e i t h e r t h e top−L r e g i o n or r e m a i n i n g r e g i o n .
vo id s e l e c t T o p L I n d i c e s ( i n t L ) {

a s s e r t ( L > 0) ;
a s s e r t ( L <= t h i s −> s i z e ) ;
f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( t h i s −> s i z e ) ;
s t d : : n t h _ e l e m e n t (

t h i s −> i p t r + 0 , / / r e g i o n s t a r t s a t i n d e x 0
t h i s −> i p t r + L − 1 , / / f i r s t L e l e m e n t s o f i p t r [ s t a r t : s t o p ]
t h i s −> i p t r + t h i s −>s i z e , / / r e g i o n s t o p s a t l a s t i n d e x
Grea te rThanCompar i sonByDataValue ( t h i s −>x p t r )
) ;

}

/ / P r e t t y p r i n t t h e c u r r e n t i n d e x o r d e r and a s s o c i a t e d d a t a v a l u e s
vo id p p r i n t ( ) {

t h i s −> p p r i n t ( t h i s −> s i z e ) ;
}

/ / P r e t t y p r i n t t h e c u r r e n t i n d e x o r d e r and a s s o c i a t e d d a t a v a l u e s
vo id p p r i n t ( i n t topL ) {

p r i n t f ( " i n d s : " ) ;
f o r ( i n t i = 0 ; i < topL ; i ++) {

p r i n t f ( " %5d " ,
t h i s −> i p t r [ i ] ) ;

}
p r i n t f ( " \ n " ) ;
p r i n t f ( " d a t a : " ) ;
f o r ( i n t i = 0 ; i < topL ; i ++) {

p r i n t f ( " % 5 . 2 f " ,
t h i s −>x p t r [ t h i s −> i p t r [ i ] ] ) ;

}
p r i n t f ( " \ n " ) ;

}

} ;
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i n t main ( i n t a rgc , c h a r ** a rgv ) {
/ / Use f i x e d random seed f o r r e p r o d u c a b i l i t y
u n s i g n e d i n t s eed = 555542;
/ / u n s i g n e d i n t s eed = 1456763546;
/ / u n s i g n e d i n t s eed = ( u n s i g n e d i n t ) t ime ( 0 ) ;

p r i n t f ( " s eed : %d \ n " , s eed ) ;
s t d : : s r a n d ( seed ) ;

/ / S e t s i z e o f our w e i g h t v e c t o r
i n t K = 1 0 ;

/ / G e n e r a t e w e i g h t v e c t o r o f v a l u e s i n [ 0 . 0 , 1 . 0 ]
Arr1D_d weightVec = Arr1D_d : : Random (K) ; / / Va lues i n [−1 , +1]
weightVec += 1 . 0 ;
weightVec /= 2 . 0 ;

/ / C r e a t e s t r u c t w i th c o r r e s p o n d i n g i n d i c e s
A r r a y W i t h I n d i c e s myDataAndInds = A r r a y W i t h I n d i c e s (

weightVec . d a t a ( ) , K) ;
p r i n t f ( " C r e a t e d random w e i g h t v e c t o r o f s i z e %d \ n " , K) ;
myDataAndInds . p p r i n t ( ) ;

p r i n t f ( " C a l l i n g s o r t I n d i c e s ( ) \ n " ) ;
myDataAndInds . s o r t I n d i c e s ( ) ;
myDataAndInds . p p r i n t ( ) ;

p r i n t f ( " R e s e t t o o r i g i n a l o r d e r \ n " ) ;
myDataAndInds . f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( ) ;
myDataAndInds . p p r i n t ( ) ;

f o r ( i n t L = 1 ; L < 1 0 ; L++) {
p r i n t f ( " C a l l i n g s e l e c t T o p L I n d i c e s (%d ) \ n " , L ) ;

myDataAndInds . s e l e c t T o p L I n d i c e s ( L ) ;
myDataAndInds . p p r i n t ( ) ;

p r i n t f ( " R e s e t t o o r i g i n a l o r d e r \ n " ) ;
myDataAndInds . f i l l I n d i c e s I n I n c r e a s i n g O r d e r ( ) ;
/ / myDataAndInds . p p r i n t ( ) ;

}

r e t u r n 0 ;
}
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