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Abstract

We propose a hierarchical generative model that captures the self-similar structure
of image regions as well as how this structure is shared across image collections.
Our model is based on a novel, variational interpretation of the popular expected
patch log-likelihood (EPLL) method as a model for randomly positioned grids
of image patches. While previous EPLL methods modeled the density of image
patches with finite Gaussian mixtures, we use nonparametric Dirichlet process
(DP) mixtures to create models whose complexity grows as additional images are
observed. An extension based on the hierarchical DP then captures the repetitive
and self-similar structure of image regions via image-specific variations in cluster
frequencies. We derive a structured variational inference algorithm that uses birth
and delete moves to create new patch clusters and thus more accurately model novel
image textures. Our denoising performance on standard benchmarks is superior
to EPLL and comparable to the state-of-the-art, while providing a novel statistical
interpretation for many common image processing heuristics.

1 Introduction

Models of the statistical structure of natural images play a key role in many computer vision and image
processing tasks [1]. Due to the high dimensionality of the images captured by modern cameras,
a rich research literature instead models the statistics of small image patches. For example, the
K-SVD method [2] generalizes K-means clustering to learn a dictionary for sparse coding of image
patches. The state-of-the-art learned simultaneous sparse coding (LSSC) [3] and block matching
and 3D filtering (BM3D) [4] methods integrate clustering, dictionary learning, and denoising to
extract information directly from a single corrupted image. Alternatively, the accurate expected patch
log-likelihood (EPLL) [5] method models an overlapping grid of natural image patches using finite
Gaussian mixtures learned from a collection of uncorrupted natural images.

We show that with minor modifications, the objective function underlying EPLL is equivalent to a
variational log-likelihood bound for a novel generative model of whole images. Our model coherently
captures overlapping image patches via a randomly positioned spatial grid. By deriving a rigorous
variational bound, we then develop improved nonparametric models of natural image statistics using
the hierarchical Dirichlet process (HDP) [6]. In particular, DP mixtures allow an appropriate model
complexity to be inferred from data, while the hierarchical DP captures the patch self-similarities and
repetitions that are ubiquitous in natural images [1]. Unlike previous whole-image generative models
such as fields of experts (FoE) [7], which use a single set of Markov random field parameters to
model all images, our HDP model allows the learning of image-specific clusters to accurately model
distinctive textures. Coupled with a scalable structured variational inference algorithm, we match
the state-of-the-art denoising performance of the LSSC and BM3D algorithms, while providing a
Bayesian nonparametric model with a broader range of potential applications.
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Figure 1: Left: Graphical representation for our HDP-Grid model. Right: Diagram of how our model generates
whole images from a randomly selected grid of non-overlapping patches: (a) A 5× 5 pixel image whose pixels
are uniquely specified by the color and shape of the symbol inside; (b) An infinitely large 2-dimensional grid of
pixels, divided into 2× 2 patches; (c-f) The four possible ways for the image in (a) to be constructed from 2× 2
patches. The shaded pixels would be clipped by the image boundary, as described in Sec. 2.

2 A Hierarchical DP Mixture Model for Grids of Image Patches

Hierarchical Dirichlet process mixture models. The hierarchical Dirichlet process (HDP) [6] is
a Bayesian nonparametric prior used to perform clustering across groups of related data. We use the
HDP prior to model natural images, where each image is a “group” of patches. The HDP allows us to
share structure, such as patches of grass or patches of bricks, by sharing a common set of clusters
(also called topics) across images. In addition, the HDP models image-specific variability by allowing
each image to use this shared set of clusters with custom frequencies, so that grass might be abundant
in one image but absent in another. Finally, we can learn the proper number of hidden clusters or
topics from data, and discover new clusters as we collect new images with novel visual textures.

For each of the countably infinite set of clusters indexed by k, the HDP uses a stick-breaking
construction to generate a corpus-wide frequency vector η = [η1, η2, . . . , ηk, . . .] that sums to one:

βk ∼ Beta(1, γ), ηk , βk
∏k−1

`=1 (1− β`). (1)
Just like topic models of text data [8], the HDP allows each image m to have its own topic frequencies
πm, where the vector η determines the mean of a DP prior on the frequencies of shared topics:

πm ∼ DP(αη), E[πmk] = ηk. (2)
When the concentration parameter α < 1, we capture the “burstiness” and self-similarity of natural
image regions [1] by placing most probability mass in πm on a sparse subset of the global topics.

Image generation via random patch grids. Unlike text data, images are not naturally divided
into meaningful word tokens. We thus generate the pixels in image m via a randomly placed grid
of patches, each with G total pixels. (In our experiments, G = 8 × 8 = 64.) This implies there
are exactly G possible grid alignments for an image of arbitrary size, as illustrated in Fig. 1. Let
wm ∈ {1, . . . , G}, the alignment randomly chosen for image m, be sampled from a uniform prior:

wm ∼ Categorical(1/G, . . . , 1/G). (3)

Patch generation via Gaussian mixtures. Given a particular non-overlapping grid of patches, our
HDP-Grid model generates each patch as an independent draw from a Gaussian mixture model.
Gaussian mixtures have recently been shown to produce surprisingly good density models for natural
image patches [9]. Our model assumes that each cluster is defined by a zero-mean, full-covariance
Gaussian over the G pixels in each image patch. We parameterize cluster k by a precision (inverse
covariance) matrix Λk, which is drawn from a conjugate Wishart prior. The set of image-specific
frequencies {πmk}∞k=1 and precision matrices {Λk}∞k=1 then define an “infinite” Gaussian mixture.

If image m is assigned to grid alignment g, we sample topic assignments to each of the Nmg patches
in grid g. For the patch at index n, let zmgn ∈ {1, 2, . . .} denote the integer id of the chosen topic.

2



Patch n also has a vector of pixel values vmgn of length G, generated as follows:
zmgn|wm = g ∼ Categorical(πm), vmgn|wm = g, zmgn = k ∼ N (0,Λ−1k ). (4)

Note that as the Gaussian topics all have zero mean, to match the pixel intensity distributions of real
images, we add a DC offset umgn to each patch [5], a scalar value not dependent on zmgn:

umgn|wm = g ∼ N (r, s2). (5)
Finally, we assemble the generated patches vm into a whole clean image, which we denote by xm:

xm|wm = g, um, vm ∼ N
(∑Nmg

n=1
PT
mgn

(
Cmgnvmgn + umgn

)
, δ2I

)
(6)

This model sets the mean of the image xm by stitching together all patches in the chosen grid g,
and then adds per-pixel noise with small variance δ2. Most patches in the chosen grid will be fully
observed in xm, but some near the boundaries may have pixels clipped off, as shown in Fig. 1. The
matrix Cmgn performs this mapping for each patch, so that vector Cmgnvmgn + umgn represents
the observed pixels in patch n. This observed pixel vector is then projected to its appropriate place
within the whole image vector via a binary indicator matrix Pmgn.

For image restoration tasks, the observed image ym is a corrupted version of some clean image xm
that we would like to estimate. Specifically, we consider denoising tasks where the model is:

ym|xm ∼ N (xm, σ
2I). (7)

The variance σ2 � δ2 indicates the noise level.

3 Structured Variational Inference

Posterior inference for each image m must consider multiple possible grid alignments that could have
generated the image. This reasoning about multiple alignments is what makes our model a powerful
generative model for whole images; grid overlap produces posterior dependencies between patches.

In this section, we provide a high-level summary of our structured mean-field variational posterior q:

q ,
∏K

k=1
q(Λk)q(βk) ·

∏M

m=1
q(πm)q(wm)q(xm)

∏Ngn

n=1
q(umgn|wm)q(zmgn, vmgn|wm) (8)

We train this approximate posterior by optimizing a lower bound on the marginal log-likelihood of
the observed images. This objective is also known as the evidence lower bound (ELBO), and could
be rewritten (up to a constant) as the negative of the KL divergence between the joint posterior and
the variational approximation q [10]. Below, we describe each factor of q and its associated free
parameters (which are denoted as letters with hats). Our algorithm performs coordinate ascent on the
factors of q, iteratively updating each one while holding others fixed. Many updates are standard due
to the model’s conjugate structure and are omitted for brevity.

Patch-level. We assume the variables specific to patch n in grid g have a structured posterior, which
conditions on the chosen grid alignment g and chosen topic assignment k. We have the following
posteriors for assignments z, pixel vectors v, and scalar offsets u:

q(zmgn|wm = g) = Categorical(r̂mgn1, ..., r̂mgnK), (9)

q(vmgn|wm = g, zmgn = k) = N (v̂mgnk, φ̂
v
mgnk), q(umgn|wm = g) = N (ûmgn, φ̂

u
mgn). (10)

This construction provides a rigorous derivation for the heuristically motivated EPLL algorithm [5].

Image-level. In the real world, we expect no single grid alignment to do a noticeably better job of
explaining some natural image. Thus, we directly enforce in our approximate posterior that all G
possible grid locations have the same uniform probability: q(wm) = Categorical( 1

G , . . . ,
1
G ).

Other image-level variables have standard forms for the approximate posterior. We set the whole-
image posterior q(xm) to be a normal distribution, whose optimal covariance is diagonal. Given a
current hypothesis K for the number of topics that have been observed at least once, we truncate our
posterior on image-specific topic frequencies q(πm) to a finite Dirichlet distribution as in [11].

Corpus-level. To model the structure shared across a collection of images, we learn the parameters
of our hierarchical DP Gaussian mixture via variational posteriors q(Λk) = Wishart(ν̂k, Ŵk) and
q(βk) = Beta

(
ρ̂kω̂k, (1− ρ̂k)ω̂k

)
. We only explicitly compute posterior statistics for the K topics

that have been assigned to at least one patch. The infinite set of not-yet-observed image topics is then
tractably approximated by setting their variational parameters to match the prior [11].
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Figure 3: Top: An image from BSDS-68. Algorithms like LLSC, which learn solely from the noisy image, may
not accurately model the range of natural image textures. Bottom: An image from classic-12 that shows our
ability to create new, image-specific topics. In areas like the pants, scarf, and tablecloth, HDP+ is clearly superior
to the HDP and EPLL methods in restoring stripes of varying width and orientation. Best viewed online.

Image-specific topics. Most images contain unique textural patterns. The Bayesian nonparametric
nature of our model allows us to create novel, image-specific topics during inference. For each
test image, we augment the existing K topics with K ′ = 100 new topics, initialized using a
generalization of k-means++ [12] to the Bregman divergence associated with our zero-mean, full-
covariance Gaussian likelihood [13]. This procedure samples K ′ diverse patches from the test
image. We use these patches to initialize K ′ new clusters, and refine them via the corpus-level
variational updates. The resulting posterior approximation to the test image, and all training images,
has K+K ′ total topics. While we initialize K ′ to a large number to avoid local optima, this may lead
to extraneous topics, so we delete any new topics that are not assigned to any patch. In the bottom
image of Fig. 3, this leaves 9 image-specific topics. This deletion improves model interpretability
and algorithm speed, because costs scale linearly with the number of instantiated topics.

4 Experimental Validation: Image Denoising
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Figure 2: Clean image ELBO
vs. PSNR for 12 “classic” images.
Better statistical models have im-
proved denoising accuracy.

We train our HDP-Grid model using the 400 training and validation
images from the Berkeley Segmentation Dataset (BSDS) [14]. We
consider three variants of our method: (i) a DP mixture constrains
images to have the same distribution πm = η, and learns K =
90 topics; (ii) an HDP mixture allows image-specific variation in
frequencies πm, and learns K = 146 topics; (iii) HDP+, the HDP
mixture augmented with up toK ′ = 100 novel image-specific topics.
Fig. 2 compares clean image ELBO and PSNR values on 12 “classic”
images used in many previous denoising papers [3; 5]. We see clear
increases in both ELBO and PSNR as we transition from DP to HDP
to HDP+, suggesting that learning image-specific frequencies and
textures is useful. Examples in Fig. 3 illustrate this trend.

Table 1 compares average denoising performance to many other
methods; BSDS-68 denotes the 68 images from [14] used by [7; 5].
Our denoising performance is superior to the state-of-the-art on this
dataset, illustrating the value of Bayesian nonparametric learning
from large image collections. Our performance is competitive with
top methods tuned to perform well on classic-12, where repeated
textures make the HDP+ variant of our model particularly effective.

Table 1: Average PSNR values on two benchmark datasets, for Gaussian noise with standard deviation 25.

Dataset DP HDP HDP+ EPLL FoE KSVDG KSVD BM3D LSSC

classic-12 29.33 29.42 29.63 29.39 28.28 28.88 29.10 29.74 29.75
BSDS-68 28.67 28.72 28.78 28.72 27.71 28.28 28.27 28.56 28.70
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